On Cyclic and Negacyclic Codes of Length 8ps Over Fpm + uFpm

Jump To References Section

Authors

  • Department of Mathematics, S. A. Jain P. G. College, Ambala City 134003 ,IN

DOI:

https://doi.org/10.18311/jims/2020/23906

Keywords:

Cyclic codes, negacyclic codes, constacyclic codes, dual codes, self-dual codes.
94B15

Abstract

In this paper, we establish the algebraic structure of all cyclic and negacyclic codes of length 8ps over the chain ring Fpm + uFpm in terms of their generator polynomials, where u2 = 0 and s is a positive integer and p is an odd prime. We also find out the number of codewords in each of these cyclic codes. Besides this, we determine duals of cyclic codes and list self-dual cyclic and negacyclic codes of length 8ps over Fpm + uFpm. Also, we determine μ and -constacyclic codes of length 8ps over Fpm + uFpm.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2020-07-01

How to Cite

Rani, S. (2020). On Cyclic and Negacyclic Codes of Length 8p<sup>s</sup> Over Fp<sup>m</sup> + uFp<sup>m</sup>. The Journal of the Indian Mathematical Society, 87(3-4), 231–260. https://doi.org/10.18311/jims/2020/23906
Received 2019-07-10
Accepted 2023-01-30
Published 2020-07-01

 

References

E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill Book Company, New York, 1968.

I. F. Blake, S. Gao and R. C. Mullin, Explicit factorization of X2k + 1 over Fp with prime p 3 (mod 4), App. Algebra Engrg. Comm. Comput., 4. (1993), 89–94.

B. Chen, H. Q. Dinh, H. Liu and L. Wang, Constacyclic codes of length 2ps over Fpm + uFpm, Finite Fields Appl., 37. (2016), 108–130 .

H. Q. Dinh, Constacyclic codes of length ps over Fpm + uFpm, J. Algebra, 324. (5) (2010), 940–950.

H. Q. Dinh, On repeated-root constacyclic codes of length 4ps, Asian-Eur. J. Math., 6. (2)(2013), DOI: 10.1142/S1793557113500204.

H. Q. Dinh, S. Dhompongsa, and S. Sriboonchitta, On constacyclic codes of length 4ps over Fpm + uFpm, Discrete Math., 340. (2017), 832–849.

H. Q. Dinh, Y. Fan, H. Liu, X. Liu and S. Sriboonchitta, On self-dual constacyclic codes of length ps over Fpm + uFpm, Discrete Math., 341. (2018), 324–335.

H. Q. Dinh and S. R. Lopez-Permouth, Cyclic and negacyclic codes over finite chain rings, IEEE Trans. Inform. Theory, 50. (8) (2004), 1728–1744.

H. Q. Dinh, B. T. Nguyen, S. Sriboonchitta and Thang M. Vo, On (+u)-constacyclic codes of length 4ps over Fpm + uFpm, Journal of Algebra and its applications, 18. (2)(2019), DOI: 10.1142/S0219498819500233.

H. Q. Dinh, A. Sharma, S. Rani and S. Sriboonchitta, Cyclic and negacyclic codes of length 4ps over Fpm + uFpm, Journal of Algebra and its applications, 17. (9) (2018), DOI: 10.1142/S0219498818501736.

H. Q. Dinh, L. Wang and S. Zhu, Negacyclic codes of length 2ps over Fpm + uFpm, Finite Fields Appl., 31. (2015), 178–201.

A. R. Hammons, Jr., P. V. Kumar, A. R. Calderbank, N. J. A. Sloane and P. Sole, The Z4-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 40. (2) (1994), 301–319.

V. Pless and Z. Qian, Cyclic codes and quadratic residue codes over Z4, IEEE Trans. Inform. Theory, 42. (5) (1996), 1594–1600 .

V. Pless, P. Sole and Z. Qian, Cyclic self-dual Z4-codes, Finite Fields Appl., 3. (1) (1997), 48–69.

E. Prange, Cyclic error-correcting codes in two symbols, Air Force Cambridge Research Labs, Bedford, Mass, TN-57-103 (1957).

S. Rani, Constacyclic codes, PhD Thesis, IIT Delhi, available at http://eprint.iitd.ac.in/handle/12345678/7199.