Efficacy of Pure Compound-Acaciasides A and B as Potential Bioagents against Various Plant Pathogens

Jump To References Section

Authors

  • Eco-club Research Unit, Kanchannagar D.N.Das High School, Kanchannagar, Burdwan-713102, West Bengal ,IN
  • Life Science Unit, Burdwan Model School, Dewandighi,Burdwan-713101, West Bengal ,IN

Keywords:

Acaciasides, Bioagents, Pathogens, Mulberry, Silkworms, Effective Rate of Rearing ( ERR).

Abstract

Recent studies have revealed that ecofriendly biological agent acaciasides (A and B) are highly effective at a dose of 1 mg / mulberry plant ( Morus alba L., cv. S1) in ameliorating diseases caused by plant pathogens, viz., ischolar_main-knot nematodes Meloidogyne incognita (Kofoid & White) Chitwood causing ischolar_main-knot disease, fungus Cercosporam moricola (Cooke) causing leaf spot disease, fungus Phyllactinia corylea (Pers.) Karst causing powdery mildew disease, mosaic virus causing mosaic disease and mealy bug Maconellicoccus hirsutus (Green) causing tukra disease. Acaciasides also improves the growth of silkworms, shell weight, effective rate of silkworms rearing, sex ratio percentage and egg laying capacity of mother moth.

Published

2012-06-01

Issue

Section

Articles

 

References

Das, S., Sukul, N. C., Mitra, D. and Sarkar, H. 1989. Distribution of lectin in nematode infested and uninfested ischolar_mains of Hibiscus esculentus. Nematologica Mediterranea, 17: 123-125.

Datta, S. C, Sinhababu, S. P and Sukul, N. C. 1997. Improved growth of silkworms from effective treatment of mulberry diseases by Acacia auriculiformis extract. Sericologia, 37(4): 707-712.

Datta, S. C., Datta (Nag), R., Sinhababu, S. P. and Sukul, N. C. 1998. Acaciasides and ischolar_mainknot nematode extract suppress Melodogyne incognita infection in lady’s finger plants. Proceeding of the National Seminar on Environmental Biology, 98: 205-209.

Datta, S. C. 2006. Possible use of amaranth as catch crop for ischolar_main-knot nematodes intercropped with okra. Phytomorphology, 56 (3&4): 113-116.

Datta, S. C., Datta (Nag) R. 2006a. Liquid homeopathic medicine Cina enriches sericulture industry. J. Environ. & Sociobiol., 3 (1): 55-60.

Datta, S. C., and Datta (Nag), R. 2006b. Defence resistance of okra against ischolar_main-knot disease by bio-nematicides. Proc. zool. Soc., 59 (2): 75-82.

Datta, S. C. and Datta (Nag), R. 2007. Increased silk production by effective treatment of naturally infected ischolar_main-knot and black leaf spot diseases of mulberry with acaciasides. J. Environ. & Sociobiol., 4(2) : 209-214.

Datta, S. C. 2007. Mulberry disease : Problem in sericulture. SEBA Newsletter, 4(1): 7-10.

Field, B., Jordan, F. and Osbourn, A. 2006. First encounters – development of defence – related natural products by plants. New Phytologist, 172: 193-207.

Jasinski, M., Stukkens, Y., Degand, H., Purnelle, B., Marchand-Brynaert, J., Boutry, M. 2001. A plant plasma membrane ATP binding cassette-type transporter is involved in antifungal terpenoid secretion. Plant Cell, 13: 1095-1107.

Mahato, S. B., Pal, B. C. and Nandi, A. K.1992. Structure elucidation of two acylated triterpenoid bioglycosides from Acacia auriculiformis Cunn. Tetrahedron, 48: 6717-6728.

Mauch-Mani, B. and Metraux, J. P. 1998. Salicylic acid and systemic acquired resistance to pathogen attack. Annals of Botany, 82: 535-540.

Mc Clure, M. A., Misaghi, I. and Night Edward L. Jun. 1973. Shared antigens of parasitic nematodes and host plants. Nature, 244: 306.

Nandi, B., Kundu, K., Banerjee, N. and Sinhababu, S. P. 2003. Salicylic acid –induced suppression of Meloidogyne incognita infestation of okra and cowpea. Nematology, 5: 747-752.

Osbourn, A. E., Clarke, B. R., Lunness, P., Scott, P. R. and Daniels, M. J. 1994. An oat species lacking avenacin is susceptible to infection by Gaeumannomyces graminis var. tritici. Physiological and Molecular Plant Pathology, 45: 457-467.

Osbourn, A. E. 1996. Saponins and plant defence – a soap story. Trends in Plant Science 1: 4-9.

Osbourn, A. E., Qi, X., Townsend, B. and Qin, B. 2003. Secondary metabolism and plant defence. New Phytologist, 159: 101-108.

Papadopoulou, K., Melton, R. E., Leggett, M., Daniels, M. J. and Osbourn, A. E. 1999. Compromised disease resistance in saponin-deficient plants. Proceedings of the National Academy of Science, USA, 96: 12923-12928.

Ross, A. F. 1961. Systemic acquired resistance induced by localized virus infection in plants. Virology, 14: 340-358.

Stukkens, Y., Bultreys, A., Grec, S., Trombik, T., Vanham, D. and Boutry, M. 2005. NpPDRI, a pleiotropic drug resistance-type ATP- binding cassette transporter from Nicotiana plumbaginifolia, plays a major role in plant pathogen defense. Plant Physiology, 139: 341-352.

Sukul, N. C.1987. Soil and plant nematodes. West Bengal State Book Board Publisher, pp. 1-271.

Sukul, N. C. 1992. Plants antagonistic to plant parasitic nematodes. Indian Review of Life Science, 12: 23-52.

Sukul, N. C. 1994. Control of plant parasitic nematodes by plant substances. In : Allelopathy in Agriculture and Forestrys: (Ed S.S. Narwal and P. Tauro), Scientific Publisher, Jodhpur, India, pp. 183-211.

Sukul, N. C., Sinhababu, S. P., Datta, S. C., Nandi, B. and Sukul, A. 2001. Nematotoxic effect of Acacia auriculiformis and Artemisia nilagirica against ischolar_main-knot nematodes. Allelopathy Journal, 8: 65-72.

Zarter, C. R., Demmig-Adams, B., Ebbert, V., Adamska, I. and Adams, W. W. III. 2006. Photosynthetic capacity and light harvesting efficiency during the winter-to-spring transition in subalpine conifers. New Phytologist, 172: 283-292.