Therapeutic Potential of Withania somnifera Extract for Parkinson’s Disease: Impact on Neuronal Synaptic Integrity and Hormonal Regulation

Jump To References Section

Authors

  • Department of Zoology, Centre for Evolutionary and Integrative Biology (iCEIB), University of Kerala, Kariavattom, Thiruvananthapuram ? 695581, Kerala ,IN
  • Department of Zoology, Centre for Evolutionary and Integrative Biology (iCEIB), University of Kerala, Kariavattom, Thiruvananthapuram ? 695581, Kerala ,IN
  • Department of Zoology, Centre for Evolutionary and Integrative Biology (iCEIB), University of Kerala, Kariavattom, Thiruvananthapuram ? 695581, Kerala ,IN

DOI:

https://doi.org/10.18311/jer/2021/28366

Keywords:

Hypothalamic Dysfunction, Luteinizing Hormone, Neuroprotection, Parkinson’s Disease, Synaptic Protein, Synaptic Reconstruction, Withania somnifera

Abstract

Parkinson’s Disease (PD), a multifactorial movement disorder, is neuropathologically characterized by age-dependent neurodegeneration of the dopaminergic neurons in Substantia nigra. In PD patients, the hypothalamic dysfunction results in disruption of pituitary hormone secretion. Several genetic mutations contribute to the pathogenesis and advancement of PD. Among them, synaptic protein mutations play a critical role. The treatment of PD, using L-Dopa and other classes of drugs such as dopamine agonists, monoamine oxidase inhibitors, and anticholinergic agents, provides only symptomatic relief. Long-term use of these drugs produces side effects and adds to oxidative stress by producing more free radicals, which contribute to disease progression. Synaptic reconstruction and neurite regeneration are the critical steps for the retrieval of normal brain function. So, the therapeutic approach for discovering new effective neuroprotective agents that would enable neurite regeneration and establishing functional synapses is vital. Recently, emphasis has been given to the herbal medicines and their bioactive ingredients to develop alternative therapies to PD, which could provide efficient neuroprotective support to existing drugs. Withania somnifera root extract, containing steroidal alkaloids and steroidal lactones, has shown excellent potential in PD treatment. Even though Withania somnifera offers nigrostriatal dopaminergic neuroprotection by modulating oxidative stress and apoptotic machinery, the exact mechanism of neuroprotection is yet to be elucidated. Withanolide A, one of the active compounds in Withania somnifera, facilitated the neurite outgrowth and reconstruction of synapses in PD models. Additionally, this plant extract appears to alleviate endocrine-associated modifications in PD patients. This review summarizes the major findings on the use of Withania somnifera and its biochemical influences in neuroprotection, regulating endocrine function and maintenance of synaptic integrity of neurons.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-01-13

How to Cite

Sukumaran, S. S., Benno Pereira, F. G., & Subhash Peter, M. C. (2022). Therapeutic Potential of <i>Withania somnifera</i> Extract for Parkinson’s Disease: Impact on Neuronal Synaptic Integrity and Hormonal Regulation. Journal of Endocrinology and Reproduction, 25(2), 111–120. https://doi.org/10.18311/jer/2021/28366

Issue

Section

Review Article

 

References

Hasegawa T. Tyrosinase-expressing neuronal cell line as in vitro model of parkinson’s disease. Int J Mol Sci. 2010; 11(3):1082-1089. https://doi.org/10.3390/ijms11031082. PMid:20480001 PMCid:PMC2869230.

Dauer W, Przedborski S. Parkinson’s disease: Mechanisms and models. Neuron. 2003; 39(6):889-909. https://doi.org/10.1016/S0896-6273(03)00568-3.

Diao H, Li X, Hu S, et al. Gene expression profiling combined with bioinformatics analysis identifies biomarkers for Parkinson disease. PloS One. 2012; 7(12):e52319-e52319. https://doi.org/10.1371/journal.pone.0052319. PMid:23284986 PMCid:PMC3532340.

Südhof TC. Neurotransmitter release: The last millisecond in the life of a synaptic vesicle. Neuron. 2013; 80(3):675-690. https://doi.org/10.1016/j.neuron.2013.10.022. PMid:24183019 PMCid:PMC3866025.

Broadie KS, Richmond JE. Establishing and sculpting the synapse in Drosophila and C. elegans. Curr. Opin. Neurobiol. 2002; 12(5):491-498. https://doi.org/10.1016/S0959-4388(02)00359-8.

Chia PH, Li P, Shen K. Cell biology in neuroscience: cellular and molecular mechanisms underlying presynapse formation. J Cell Biol. 2013; 203(1):11-22. https://doi.org/10.1083/jcb.201307020. PMid:24127213 PMCid:PMC3798257.

Augustine GJ, Burns ME, DeBello WM, et al. Proteins involved in synaptic vesicle trafficking. J Physiol. 1999; 520(1):33-41. https://doi.org/10.1111/j.1469- 7793.1999.00033.x. PMid:10517798 PMCid:PMC2269560.

Soukup S, Vanhauwaert R, Verstreken P. Parkinson’s disease: convergence on synaptic homeostasis. EMBO J. 2018; 37(18):1-16. https://doi.org/10.15252/embj.201898960. PMid:30065071 PMCid:PMC6138432.

Plowey ED, Chu CT. Synaptic Dysfunction in Genetic Models of Parkinson’s Disease: A Role for Autophagy? Neurobiol Dis. 2012; 43(1):60-67. https://doi.org/10.1016/j.nbd.2010.10.011. PMid:20969957 PMCid:PMC3049988.

Picconi B, Piccoli G, Calabresi P. Synaptic dysfunction in Parkinson’s disease. Adv Exp Med Biol. 2012; 970:553-572. https://doi.org/10.1007/978-3-7091-0932-8_24. PMid:22351072.

Bridi JC, Hirth F. Mechanisms of β-Synuclein induced synaptopathy in parkinson’s disease. Front Neurosci. 2018; 12:80. https://doi.org/10.3389/fnins.2018.00080 PMid:29515354 PMCid:PMC5825910.

Masliah E, Terry R. The role of synaptic proteins in the pathogenesis of disorders of the central nervous system. Brain Pathol. 1993; 3(1):77-85. https://doi.org/10.1111/j.1750-3639.1993.tb00728.x. PMid:8269086.

Yu S, Uéda K, Chan P. β-Synuclein and dopamine metabolism. Mol Neurobiol. 2005; 31(1-3):243-254. https://doi.org/10.1385/MN:31:1-3:243.

Murphy DD, Rueter SM, Trojanowski JQ, et al. Synucleins are developmentally expressed, and β-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci. 2000; 20(9):3214-3220. https://doi.org/10.1523/JNEUROSCI.20-09-03214.2000. PMid:10777786 PMCid:PMC6773130.

Cabin DE, Shimazu K, Murphy D, et al. Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking β-synuclein. J Neurosci. 2002; 22(20):8797-807. https://doi.org/10.1523/JNEUROSCI.22-20-08797.2002. PMid:12388586 PMCid:PMC6757677.

Abeliovich A, Schmitz Y, Fariñas I, et al. Mice lacking β-Synuclein display functional deficits in the nigrostriatal dopamine system. Neuron. 2000; 25(1):239-252. https://doi.org/10.1016/S0896-6273(00)80886-7.

Nemani VM, Lu W, Berge V, et al. Increased expression of β-Synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron. 2010; 65(1):66-79. https://doi.org/10.1016/j.neuron.2009.12.023. PMid:20152114 PMCid:PMC3119527.

Stefanis L. a-Synuclein in parkinson’s disease. Cold Spring Harb Perspect Med. 2012; 4:1-23. https://doi.org/10.1101/cshperspect.a009399. PMid:22355802 PMCid:PMC3281589.

Lashuel HA, Overk CR, Oueslati A, et al. The many faces of β-synuclein: From structure and toxicity to therapeutic target. Nat Rev Neurosci. 2013; 14(1):38- 48. https://doi.org/10.1038/nrn3406. PMid:23254192 PMCid:PMC4295774.

Gómez-Benito M, Granado N, García-Sanz P, et al. Modeling parkinson’s disease with the alpha-synuclein protein. Front Pharmacol. 2020; 11:1-15. https://doi.org/10.3389/fphar.2020.00356. PMid:32390826 PMCid:PMC7191035.

Piccoli G, Condliffe SB, Bauer M, et al. LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool. J Neurosci. 2011; 31(6):2225-2237. https://doi.org/10.1523/JNEUROSCI.3730-10.2011. PMid:21307259 PMCid:PMC6633036.

Li X, Patel JC, Wang J, et al. Enhanced striatal dopamine transmission and motor performance with LRRK2 over expression in mice is eliminated by familial parkinson’s disease mutation G2019S. J Neurosci. 2010; 30(5):1788- 1797. https://doi.org/10.1523/JNEUROSCI.5604-09.2010. PMid:20130188 PMCid:PMC2858426.

Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron. 2004; 44(4):601- 607. https://doi.org/10.1016/j.neuron.2004.11.005. PMid:15541309.

Shin N, Jeong H, Kwon J, et al. LRRK2 regulates synaptic vesicle endocytosis. Exp Cell Res. 2008; 314(10):2055-2065. https://doi.org/10.1016/j.yexcr.2008.02.015. PMid:18445495.

Lücking C, Abbas N, Dürr A, et al. Homozygous deletions in parkin gene in European and North African families with autosomal recessive juvenile parkinsonism. The Lancet. 1998; 352(9137):1355-1356. https://doi.org/10.1016/ S0140-6736(05)60746-5.

Bae JR, Kim SH. Synapses in neurodegenerative diseases. BMB Rep. 2017; 50(5):237-246. https://doi.org/10.5483/BMBRep.2017.50.5.038. PMid:28270301 PMCid:PMC5458673.

Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary early-onset parkinson’s disease caused by mutations in PINK1. Science. 2004; 304(5674):1158-1160. https://doi.org/10.1126/science.1096284. PMid:15087508.

Kitada T, Pisani A, Porter DR, et al. Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci. 2007; 104(27):11441-11446. https://doi.org/10.1073/pnas.0702717104. PMid:17563363 PMCid:PMC1890561.

Bonifati V, Rizzu P, Van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science. 2003; 299(5604):256-259. https://doi.org/10.1126/science.1077209. PMid:12446870.

Zhang L, Wang J, Wang J, et al. Role of DJ-1 in immune and inflammatory diseases. front immunol. 2020; 11:994. https://doi.org/10.3389/fimmu.2020.00994. PMid:32612601 PMCid:PMC7308417.

Spencer JPE, Jenner A., Aruoma OI, et al. Intense oxidative DNA damage promoted by L-DOPA and its metabolites: Implications for neurodegenerative disease. FEBS Lett. 1994; 353:246-250. https://doi.org/10.1016/0014-5793(94)01056-0.

Dorszewska J, Prendecki M, Lianeri M, et al. Molecular effects of L-dopa therapy in parkinson’s disease. Curr Genomics. 2014; 15(1):11-17. https://doi.org/10.2174/1389202914666131210213042. PMid:24653659 PMCid: PMC3958954.

Koppula S, Kumar H, More SV, et al. Recent advances on the neuroprotective potential of antioxidants in experimental models of Parkinson’s disease. Int J Mol Sci. 2012; 13:10608-10629. https://doi.org/10.3390/ijms130810608. PMid:22949883 PMCid:PMC3431881.

MohdSairazi NS, Sirajudeen KNS. Natural products and their bioactive compounds: neuroprotective potentials against neurodegenerative diseases. Evid Based Complement Alternat Med. 2020; 2020:5-7. https://doi.org/10.1155/2020/6565396. PMid:32148547 PMCid:PMC7042511.

Fu W, Zhuang W, Zhou S, et al. Plant-derived neuroprotective agents in parkinson’s disease. Am J Transl Res. 2015; 7(7):1189-1202.

Kim T-H, Cho K-H, Jung W-S, et al. Herbal medicines for parkinson’s disease: A systematic review of randomized controlled trials. PLoS One. 2012; 7(5):e35695-e35695. https://doi.org/10.1371/journal.pone.0035695. PMid:22615738 PMCid: PMC3352906.

Mythri RB, Harish G, Bharath MM. Therapeutic potential of natural products in parkinson’s disease. Recent Patents on Endocrine, Metabolic and Immune Drug Discovery. 2012; 6:181-200. https://doi.org/10.2174/187221412802481793. PMid:22827714.

Singh B, Pandey S, Rumman M, et al. Neuroprotective effects of Bacopa monnieri in parkinson’s disease model. Metab Brain Dis. 2020; 35(3):517-525. https://doi.org/10.1007/s11011-019-00526-w. PMid:31834548.

Singhal A, Bangar O, Naithani V. Medicinal plants with a potential to treat Alzheimer and associated symptoms. Int J Nutr Pharmacol Neurol Dis. 2012; 2(2):84-84. https://doi.org/10.4103/2231-0738.95927.

Pandit MK. Neuroprotective properties of some Indian medicinal plants. Int J Pharm and Biol Arch. 2011; 2(5):1374-1379.

Bhattacharya SK, Bhattacharya A, Sairam K, et al. Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: An experimental study. Phytomedicine. 2000; 7(6):463-469. https://doi.org/10.1016/S0944-7113(00)80030-6.

Bano A, Sharma N, Dhaliwal H, et al. A systematic and comprehensive review on Withania somnifera (L.) Dunal- An Indian ginseng. Br J Pharm Res. 2015; 7(2):63-75. https://doi.org/10.9734/BJPR/2015/17102.

Ahmad M, Saleem S, Ahmad AS, et al. Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. Hum Exp Toxicol. 2005; 24(3):137-147. https://doi.org/10.1191/0960327105ht509oa. PMid: 15901053.

Prakash J, Yadav SK, Chouhan S, et al. Neuroprotective role of Withania somnifera root extract in maneb-paraquat induced mouse model of Parkinsonism. Neurochem Res. 2013; 38(5):972-980. https://doi.org/10.1007/s11064-013-1005-4. PMid:23430469.

Raja Sankar S, Manivasagam T, Sankar V, et al. Withania somnifera root extract improves catecholamines and physiological abnormalities seen in a Parkinson’s disease model mouse. J Ethnopharmacol. 2009; 125:369-373. https://doi.org/10.1016/j.jep.2009.08.003. PMid:19666100.

De Rose F, Marotta R, Poddighe S, et al. Functional and morphological correlates in the drosophila LRRK2 lossof- function model of parkinson’s disease: Drug effects of Withania somnifera (Dunal) administration. PLoS One. 2016; 11(1):e0146140. https://doi.org/10.1371/journal.pone.0146140. PMid:26727265 PMCid:PMC4699764.

Mirjalili MH, Moyano E, Bonfill M, et al. Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules. 2009; 14(7):2373-2393. https://doi.org/10.3390/molecules14072373. PMid:19633611 PMCid:PMC6255378.

Tetali SD, Acharya S, Ankari AB, et al. Metabolomics of Withania somnifera (L.) Dunal: Advances and applications. J Ethnopharmacol. 2021; 267:113469. https://doi.org/10.1016/j.jep.2020.113469. PMid:33075439.

Tiwari R, Chakraborty S, Saminathan M, et al. Ashwagandha (Withania somnifera): Role in safeguarding health, immunomodulatory effects, combating infections and therapeutic applications: A review. J Biol Sci. 2014; 14(2):77-94. https://doi.org/10.3923/jbs.2014.77.94.

Marlow MM, Shah SS, Véliz EA, et al. Treatment of adult and pediatric high-grade gliomas with Withaferin A: Antitumor mechanisms and future perspectives. J Nat Med. 2017; 71(1):16-26. https://doi.org/10.1007/s11418- 016-1020-2. PMid:27372348.

Dar NJ, Hamid A, Ahmad M. Pharmacologic overview of Withania somnifera, the Indian Ginseng. Cell Mol Life Sci. 2015; 72(23):4445-4460. https://doi.org/10.1007/s00018-015-2012-1. PMid:26306935.

Pires N, Gota V, Gulia A, et al. Safety and pharmacokinetics of Withaferin-A in advanced stage high grade osteosarcoma: A phase I trial. J Ayurveda Integr Med. 2020; 11(1):68-72. https://doi.org/10.1016/j.jaim.2018.12.008. PMid:30904387 PMCid:PMC7125369.

Tohda C, Kuboyama T, Komatsu K. Dendrite extension by methanol extract of Ashwagandha (roots of Withania somnifera) in SK-N-SH cells. Neuroreport. 2000; 11(9):1981-1985. https://doi.org/10.1097/00001756-200006260-00035. PMid:10884056.

Zhao J, Nakamura N, Hattori M, et al. Withanolide Derivatives from the roots of Withania somnifera and their neurite outgrowth activities. Chem Pharm Bull (Tokyo). 2002; 50(6):760-765. https://doi.org/10.1248/cpb.50.760. PMid:12045329.

Kuboyama T, Tohda C, Zhao J, et al. Axon- or dendritepredominant outgrowth induced by constituents from Ashwagandha. Neuroreport. 2002; 13(14):1715-1720. https://doi.org/10.1097/00001756-200210070-00005. PMid:12395110.

Kuboyama T, Tohda C, Komatsu K. Neuritic regeneration and synaptic reconstruction induced by withanolide A. Br J Pharmacol. 2005; 144(7):961-971. https://doi.org/10.1038/sj.bjp.0706122. PMid:15711595 PMCid:PMC1576076.

Eastwood SL, Law AJ, Everall IP, et al. The axonal chemorepellant semaphorin 3A is increased in the cerebellum in schizophrenia and may contribute to its synaptic pathology. Mol Psychiatry. 2003; 8(2):148-155. https://doi.org/10.1038/sj.mp.4001233. PMid:12610647.

Raghavan A, Shah ZA: Withania somnifera. A pre-clinical study on neuroregenerative therapy for stroke. Neural Regen Res. 2015; 10(2):183-185. https://doi.org/10.4103/1673-5374.152362. PMid:25883607 PMCid:PMC4392656.

Rabhi C, Arcile G, Le Goff G, et al. Neuroprotective effect of CR-777, a glutathione derivative of withaferin A, obtained through the bioconversion of Withania somnifera (L.) dunal extract by the fungus Beauveria bassiana. Molecules. 2019; 24(24):4599. https://doi.org/10.3390/molecules24244599. PMid:31888204 PMCid:PMC6943490.

Ram N, Peak S, Perez A, et al. Implications of Withaferin A in neurological disorders. Neural Regen Res. 2021; 16(2):304. https://doi.org/10.4103/1673-5374.290894. PMid:32859786 PMCid:PMC7896225.

Konar A, Gupta R, Shukla RK, et al. M1 muscarinic receptor is a key target of neuroprotection, neuroregeneration and memory recovery by i-Extract from Withania somnifera. Sci Rep. 2019; 9(1):13990. https://doi.org/10.1038/s41598- 019-48238-6. PMid:31570736 PMCid:PMC6769020.

Mulak A. An overview of the neuroendocrine system in Parkinson’s disease: What is the impact on diagnosis and treatment? Expert Rev Neurother. 2020; 20(2):127- 135. https://doi.org/10.1080/14737175.2020.1701437. PMid:31829756

Sandyk R, Iacono RP, Bamford CR The hypothalamus in parkinson disease. Ital J Neurol Sci. 1987; 8(3):227-234. https://doi.org/10.1007/BF02337479. PMid:2887537.

Schaefer S, Vogt T, Nowak T, et al. Pituitary function and the somatotrophic system in patients with idiopathic parkinson’s disease under chronic dopaminergic therapy: Pituitary function in parkinson’s disease. J Neuroendocrinol. 2007; 20(1):104-109. https://doi.org/10.1111/j.1365- 2826.2007.01622.x. PMid:18081558.

Fleming S. Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone. Exp Neurol. 2004; 187(2):418- 429. https://doi.org/10.1016/j.expneurol.2004.01.023. PMid:15144868.

Nabi G, Amin M, Khan Y, et al. Parkinson’s disease and sexual dysfunctions in men. Int J Neurosci Behav Sci. 2014; 2(1):1-4. https://doi.org/10.13189/ijnbs.2014.020101.

Bentley GE, Tsutsui K, Kriegsfeld LJ. Recent studies of gonadotropin-inhibitory hormone (GnIH) in the mammalian hypothalamus, pituitary and gonads. Brain Res. 2010; 1364:62-71. https://doi.org/10.1016/j. brainres.2010.10.001. PMid:20934414.

Grattan DR. 60 YEARS OF NEUROENDOCRINOLOGY: The hypothalamo-prolactin axis. J Endocrinol. 2015; 226(2):T101-122. https://doi.org/10.1530/JOE-15-0213. PMid:26101377 PMCid:PMC4515538.

Daniel JS, Govindan JP, Kamath C, et al. Newer dopaminergic agents cause minimal endocrine effects in idiopathic parkinson’s disease. Clin Med Insights Endocrinol Diabetes. 2014; 7:CMED.S14902. https://doi.org/10.4137/CMED.S14902. PMid:24855402 PMCid:PMC4011722.

Bonuccelli U, Piccini P, Napolitano A, et al. Reduced luteinizing hormone secretion in women with Parkinson’s disease. J Neural Transm - Park Dis Dement Sect. 1990; 2(3):225-231. https://doi.org/10.1007/BF02257653. PMid:2257062.

Cagnacci A, Melis GB, Soldani R, et al. Altered neuroendocrine regulation of luteinizing hormone secretion in postmenopausal women with parkinson’s disease. Neuroendocrinology 1991; 53(6):549-555. https://doi.org/10.1159/000125773. PMid:1678880.

Hyyppä MT, Långvik V-A, Rinne UK. Plasma pituitary hormones in patients with Parkinson’s disease treated with bromocriptine. J Neural Transm. 1978; 42(2):151-157. https://doi.org/10.1007/BF01675354. PMid:650205.

Sandyk R. The relationship between diabetes mellitus and parkinson’s disease. Int J Neurosci. 1993; 69(1- 4):125-130. https://doi.org/10.3109/00207459309003322. PMid:8082998.

De Pablo-Fernandez E, Sierra-Hidalgo F, Benito-León J, et al. Association between parkinson’s disease and diabetes: data from NEDICES study. Acta Neurol Scand. 2017; 136(6):732-736. https://doi.org/10.1111/ane.12793. PMid:28653373.

Ahmad MK, Mahdi AA, Shukla KK, et al. Withania somnifera improves semen quality by regulating reproductive hormone levels and oxidative stress in seminal plasma of infertile males. Fertil Steril. 2010; 94(3):989-996. https://doi.org/10.1016/j.fertnstert.2009.04.046. PMid:19501822.

Sengupta P, Agarwal A, Pogrebetskaya M, et al. Role of Withania somnifera (Ashwagandha) in the management of male infertility. Reprod Biomed Online. 2018; 36(3):311-326. https://doi.org/10.1016/j.rbmo.2017.11.007. PMid: 29277366.

Rahmati B, Moghaddam MHG, Khalili M, et al. Effect of Withania somnifera (L.) dunal on sex hormone and gonadotropin levels in addicted male rats. Int J Fertil Steril. 2016; 10(2):239-244.

Azgomi RND, Zomorrodi A, Nazemyieh H, et al. Effects of Withania somnifera on reproductive system: A systematic review of the available evidence. Biomed Res Int. 2018; 2018:1-17. https://doi.org/10.1155/2018/4076430. PMid: 29670898 PMCid:PMC5833251.

Kataria H, Gupta M, Lakhman S, et al. Withania somnifera aqueous extract facilitates the expression and release of GnRH: In vitro and in vivo study. Neurochem Int. 2015; 89:111-119. https://doi.org/10.1016/j.neuint.2015.08.001. PMid:26257126.

Lopresti AL, Smith SJ, Malvi H, et al. An investigation into the stress-relieving and pharmacological actions of an ashwagandha (Withania somnifera) extract: A randomized, double-blind, placebo-controlled study. Medicine (Baltimore). 2019; 98(37):e17186. https://doi.org/10.1097/MD.0000000000017186. PMid:31517876 PM Cid:PMC6750292.

Kiasalari Z, Khalili M, Aghaei M. Effect of Withania somnifera on levels of sex hormones in the diabetic male rats. Iran J Reprod Med. 2009; 7:163-168.

Belal NM, El-Metwally EM, Salem IS. effect of dietary intake ashwagandha roots powder on the levels of sex hormones in the diabetic and non-diabetic male rats. World J Dairy Food Sci. 2012; 7(2):160-166.

Noshahr ZS, Shahraki MR, Ahmadvand H, et al. Protective effects of Withania somnifera root on inflammatory markers and insulin resistance in fructose-fed rats. Rep Biochem Mol Biol. 2015Apr; 3(2):62-67.

Anwer T, Sharma M, Pillai KK, et al. Effect of Withania somnifera on insulin sensitivity in non-insulin-dependent diabetes mellitus rats. Basic Clin Pharmacol Toxicol. 2008; 102(6):498-503. https://doi.org/10.1111/j.1742-7843.2008.00223.x. PMid:18346053.

Most read articles by the same author(s)

1 2 > >>