Nitric Oxide Modifies Hepatic and Cardiac Proton Gradient during Immersion-Stress in the Air- Breathing Fish (Anabas testudineus Bloch): Role of H+-ATPase and H+/K+-ATPase

Jump To References Section

Authors

  • Department of Zoology, Inter-University Centre for Evolutionary and Integrative Biology, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram - 695581, Kerala ,IN
  • Inter-University Centre for Evolutionary and Integrative Biology, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram - 695581, Kerala ,IN
  • Department of Zoology, Inter-University Centre for Evolutionary and Integrative Biology, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram - 695581, Kerala ,IN

DOI:

https://doi.org/10.18311/jer/2020/27223

Keywords:

Air-Breathing Fish, Immersion-Stress, Nitric Oxide, Sodium Nitroprusside, H -ATPase, H /K -ATPase, L-NAME

Abstract

Fishes have evolved complex and multi-step physiological mechanisms to drive ion homeostasis in challenging environments. Induction of stress that disturbs ion homeostasis in fishes evokes recovery response for their survival. Nitric Oxide (NO) as gasotransmitter modulates many physiological mechanisms including ion transport in osmoregulatory epithelia in teleosts. However, little is known about the role of NO in the transport of H+ ions that creates proton gradient with the help of H+-dependent ATPases like H+-ATPase and H+/K+-ATPase, particularly in hepatic and cardiac tissues of bony fish. We, thus, quantified H+-ATPase and H+/K+-ATPase in these tissues after in vivo treatments of NO donor, Sodium Nitro-Prusside (SNP) or NOS inhibitor, L-NAME, in both non-stressed and immersion-stressed air-breathing fish, Anabas testudineus Bloch. We found that elevated NO availability by SNP treatment lowered H+-ATPase-driven H+ transport in both hepatic and cardiac tissues of immersion-stressed fish. In contrast, NO depletion by L-NAME treatment elevated H+-ATPase activity in these tissues of stressed fish, pointing to a direct role of H+-ATPase in NO-mediated proton gradient regulation during stress condition. H+/K+-ATPase that drives H+ transport against K+ reduced its activity in cardiac tissue by SNP and L-NAME treatments. But L-NAME treatment in stressed fish imposed a higher H+ transport in cardiac tissue of these fish. Overall, the data indicate that NO has a vital role in the regulation of H+-ATPase-driven proton gradient in both cardiac and hepatic tissues of immersion-stressed fish.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2021-04-16

How to Cite

Gayathry, R., Peter, V. S., & Subhash Peter, M. C. (2021). Nitric Oxide Modifies Hepatic and Cardiac Proton Gradient during Immersion-Stress in the Air- Breathing Fish (<I>Anabas testudineus</i> Bloch): Role of H<sup>+</sup>-ATPase and H<sup>+</sup>/K<sup>+</sup>-ATPase. Journal of Endocrinology and Reproduction, 24(1), 43–52. https://doi.org/10.18311/jer/2020/27223

Issue

Section

Original Research

 

References

Wendelaar Bonga SE. The stress response in fish. Physiol Rev. 1997; 77:591-625. https://doi.org/10.1152/ physrev.1997.77.3.591. PMid:9234959

Peter VS, Peter MCS. The interruption of thyroid and interrenal and the inter-hormonal interference in fish: Does it promote physiologic adaptation or maladaptation? Gen Comp Endocrinol. 2011; 174:249258. https://doi.org/10.1016/j.ygcen.2011.09.018. PMid:22001502.

George N, Peter VS, Peter MCS. Physiologic implications of inter-hormonal interference in fish: Lessons from the interaction of adrenaline with cortisol and thyroid hormones in climbing perch (Anabas testudineus Bloch). Gen Comp Endocrinol. 2013; 181:122-129. https://doi.org/10.1016/j.ygcen.2012.11.002. PMid:23153652.

Maffia M, Acierno R, Rollo M, Rizzello A, Storelli C, Pellegrino D, Tota B. Ionic regulation in antarctic teleosts. Ital J Zool. 2000; 67:47-52. https://doi.org/10.1080/11250000009356355.

Nishi T, Forgac M. The vacuolar H+-ATPases- nature's most versatile proton pumps. Nat Rev Mol Cell Biol. 2002; 3(2):94-103. https://doi.org/10.1038/nrm729. PMid:11836511.

Maxson ME, Grinstein S. The vacuolar type H+ ATPase at a glance- more than a proton pump. J Cell Sci. 2014; 127(23):4987-4993. https://doi.org/10.1242/jcs.158550. PMid:25453113.

Perry SF, Fryer JN. Proton pumps in the fish gill and kidney. Fish Physiol Biochem. 1997; 17: 363-369. https://doi.org/10.1023/a:1007746217349.

Piermarini PM, Evans DH. Immunochemical analysis of the vacuolar proton-ATPase β-subunit in the gills of a euryhaline stingray (Dasyatis sabina): Effects of salinity and relation to Na+/K+ATPase. J Exp Biol. 2001; 204:32513259.

Guffey S, Esbaugh A, Grosell M. Regulation of apical H+ATPase activity and intestinal HCO3 secretion in marine fish osmoregulation. Am J Physiol Regul Integr Comp Physiol. 2011; 301:R1682-R1691. https://doi.org/10.1152/ ajpregu.00059.2011. PMid:21865541.

Shin JM, Munson K, Vagin O, Sachs G. The gastric HK-ATPase: structure, function and inhibition. Pflugers Arch. 2009; 457(3):609-622. https://doi.org/10.1007/ s00424-008-0495-4. PMid:18536934 PMCid:PMC3079481.

Faller L, Jackson R, Malinowska D, Mukidjam E, Rabon E, Saccomani G, Sachs G, Smolka A. Mechanistic aspects of gastric H+/K+ATPase. Ann N Y Acad Sci. 1982; 402:146-163. https://doi.org/10.1111/j.1749-6632.1982.tb25738.x. PMid:6301328.

Sachs G, Chang HH, Rabon E, Schackman R, Lewin M, Saccomani G. A nonelectrogenic H+ pump in plasma membranes of hog stomach. J Biol Chem. 1976; 251:7690-7698. https://doi.org/10.1016/S0021-9258(17)32907-32911.

Song I, Yamada T, Trent JM. Mapping of the gene coding the α-subunit of the human H+/K+ATPase to chromosome 19q13. 1 by fluorescent in situ hybridization. Genomics. 1992; 14:547-548. https://doi.org/10.1016/S08887543(05):80266-80266.

Shirihai O, Smith P, Hammar K, Dagan D. Microglia generate external proton and potassium ion gradients utilizing a member of the H+/K+ATPase family. Glia. 1998; 23:339-348. https://doi.org/10.1002/(SICI)10981136(199808)23:4<339::AID-GLIA6>3.0.CO;2-Y.

Choe KP, Verlander JW, Wingo CS, Evans DH. A putative H+/K+ATPase in the Atlantic stingray, Dasyatis sabina: primary sequence and expression in gills. Am J Physiol Regul Integr Comp Physiol. 2004; 287:R981-R991. https:// doi.org/10.1152/ajpregu.00513.2003. PMid:15217793.

Simi S, Peter VS, Peter MCS. Zymosan-induced immune challenge modifies the stress response of hypoxic airbreathing fish (Anabas testudineus Bloch): Evidence for reversed patterns of cortisol and thyroid hormone interaction, differential ion transport. Gen Comp Endocrinol. 2016; 251:94-108. https://doi.org/10.1016/j.ygcen.2016.11.009. PMid:27871800.

Peter MCS, Simi S. Hypoxia stress modifies Na+/ K+ATPase, H+/K+ATPase, Na+/NH4+ ATPase and nkaα1 isoform expression in brain of immune-challenged airbreathing fish. J Exp Neurosci. 2017; 11:1-8. https:// doi.org/10.1177/1179069517733732. PMid:29238219 PMCid:PMC5721975.

Johansen IB, Lunde IG, Rosjo H, Christensen G, Nilsson GE, Bakken M, Overli O. Cortisol response to stress is associated with myocardial remodeling in salmonid fishes. J Exp Biol. 2011; 214:1313-1321. https://doi.org/10.1242/ jeb.053058. PMid:21430209.

Fago A, Jensen FB. Hypoxia tolerance, nitric oxide, and nitrite: Lessons from extreme animals. Physiology. 2015; 30:116-126. https://doi.org/10.1152/physiol.00051.2014. PMid:25729057.

Perry S, Kumai Y, Porteus CS, Tzaneva V, Kwong RWM. An emerging role for gasotransmitters in the control of breathing and ionic regulation in fish. J Comp Physiol B Biochem Syst Environ Physiol. 2016; 186:145-159. https:// doi.org/10.1007/s00360-015-0949-x. PMid:26660653.

Garofalo F, Parisella ML, Amelio D, Tota B, Imbrogno S. Phospholamban S-nitrosylation modulates Starling response in fish heart. Proc R Soc B Biol Sci. 2009; 276:4043-4052. https://doi.org/10.1098/rspb.2009.1189. PMid:19726482 PMCid:PMC2825783.

Imbrogno S, Capria C, Tota B, Jensen FB. Nitric oxide improves the hemodynamic performance of the hypoxic goldfish (Carassius auratus) heart nitric oxide. Biol Chem. 2014; 42:24-31. https://doi.org/10.1016/j.niox.2014.08.012. PMid:25178168.

Filice M, Amelio D, Garofalo F, David S, Fucarino A, Jensen FB, Imbrogno S, Cerra MC. Angiotensin II dependent cardiac remodeling in the eel Anguilla anguilla involves the NOS/NO system. Nitric oxide. 2017; 65:50-59. https://doi.org/10.1016/j.niox.2017.02.007. PMid:28232085.

Danson EJ, Choate JK, Paterson DJ. Cardiac nitric oxide: Emerging role for nNOS in regulating physiological function. Pharmacol Ther. 2005; 106:57-74. https://doi.org/10.1016/j.pharmthera.2004.11.003. PMid:15781122

Andreakis N, Aniello SD, Albalat R, Patti FP, Procaccini G, Sordino P, Palumbo A, Garcia-ferna J. Evolution of the nitric oxide synthase family in metazoans. Mol Bio Evol. 2011; 28:163-179. https://doi.org/10.1093/molbev/msq179. PMid:20639231.

Fritsche R, Schwerte T, Pelster B. Nitric oxide and vascular reactivity in developing zebrafish, Danio rerio. Am J Physiol Regul Integr Comp Physiol. 2000; 279:R2200R2207. https://doi.org/10.1152/ajpregu.2000.279.6.R2200. PMid:11080086

Cioni C, Bordieri L, De Vito L. Nitric oxide and neuromodulation in the caudal neurosecretory system of teleosts. Comp Biochem Physiol. - B Biochem Mol Biol. 2002; 132:57-68. https://doi.org/10.1016/S10964959(01)00532-2.

Tota B, Amelio D, Pellegrino D, Ip YK, Cerra MC. NO modulation of myocardial performance in fish hearts. Comp Biochem Physiol. - A Mol Integr Physiol. 2005; 142:164-177. https://doi.org/10.1016/j.cbpb.2005.04.019. PMid:15982912.

Garofalo F, Imbrogno S, Tota B, Amelio D. Morphofunctional characterization of the goldfish (Carassius auratus L.) heart. Comp Biochem Physiol. - A Mol Integr Physiol. 2012; 163:215-222. https://doi.org/10.1016/j.cbpa.2012.05.206. PMid:22705557.

Park KH, Kim KH, Choi MS, Choi SH, Yoon JM, Kim YG. Cyclooxygenase-derived products, rather than nitric oxide, are endothelium-derived relaxing factor(s) in the ventral aorta of carp (Cyprinus carpio). Comp Biochem Physiol. - A Mol Integr Physiol. 2000; 127:89-98. https:// doi.org/10.1016/S0305-0491(00)00264-9.

Tipsmark CK, Madsen SS. Rapid modulation of Na+/ K+-atpase activity in osmoregulatory tissues of a salmonid fish. J Exp Biol. 2001; 204(4):701-709.

Evans DH, Piermarini PM, Choe KP. The multifunctional fish gill: Dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev. 2005; 85:97-177. https://doi.org/10.1152/ physrev.00050.2003. PMid:15618479.

Ebbesson LOE, Tipsmark CK, Holmqvist B, Nilsen T, Andersson E, Stefansson SO, Madsen SS. Nitric oxide synthase in the gill of Atlantic salmon: colocalization with and inhibition of Na+,K+-ATPase. J Exp Biol. 2005; 208:1011-1017. https://doi.org/10.1242/jeb.01488. PMid:15767302.

Faught E, Vijayan MM. Mechanisms of cortisol action in fish hepatocytes . Comp Biochem Physiol. Part B. 2016; 199:136-145. https://doi.org/10.1016/j.cbpb.2016.06.012. PMid:27445122.

Iwakiri Y, Kim MY. Nitric oxide in liver diseases. Trends Pharmacol Sci. 2015; 36(8):524-536. PMid:26027855 PMCid:PMC4532625.

Carnovale C, Ronco MT. Role of nitric oxide in liver regeneration. Ann Hepatol. 2012; 11(5):636-647. https:// doi.org/10.1016/S1665-2681(19)31436-X.

Ishimura N, Bronk SF, Gores GJ. Inducible nitric oxide synthase up-regulates Notch-1 in mouse cholangiocytes: Implications for carcinogenesis. Gastroenterology. 2005; 128:1354-1368. https://doi.org/10.1053/j.gastro.2005.01.055. PMid:15887117

Abu-Amara M, Yang SY, Seifalian A, Davidson B, Fuller B. The nitric oxide pathway - evidence and mechanisms for protection against liver ischaemia reperfusion injury. Liver Int. 2012; 32:531-543. https://doi.org/10.1111/j.14783231.2012.02755.x. PMid:22316165

Peter MCS, Mini VS, Bindulekha DS, Peter VS. Short-term In situ effects of prolactin and insulin onion transport in liver and intestine of freshwater climbing perch (Anabas testudineus Bloch). J Endocrinol Reprod. 2014; 18(1):4758.

Dubyak GR. Ion homeostasis, channels, and transporters: an update on cellular mechanisms. AJP Adv Physiol Educ. 2004; 28:143-154. https://doi.org/10.1152/ advan.00046.2004. PMid:15545343.

Stankovic KM, Brown D, Alper SL, Adams JC. Localization of pH regulating proteins H+ATPase and Cl-/HCO3exchanger in the guinea pig inner ear. Hearing Research. 1997; 114:21-34. https://doi.org/10.1016/S03785955(97)00072-5.

Seidelin M, Brauner CJ, Jensen FB, Madsen SS. Vacuolartype H+ATPase and Na+/K+ATPase expression in gills of atlantic salmon (Salmo salar) during isolated and combined exposure to hyperoxia and hypercapnia in fresh water. Zoo Sci. 2001; 18:1199-1205. https://doi.org/10.2108/ zsj.18.1199. PMid:11911075

Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP. Renal vacuolar H+ATPase. Physiol Rev. 2004; 84:1263-2004. https://doi.org/10.1152/physrev.00045.2003. PMid:15383652.

Poole-Wilson PA. Regulation of intracellular pH in the myocardium; Relevance to pathology. Mol Cell Biochem. 1989; 89:151-155. https://doi.org/10.1007/BF00220768 PMid:2682208.

William M, Vien J, Hamilton E, Garcia A, Bundgaard H, Clarke RJ, Rasmussen HH. The nitric oxide donor sodium nitroprusside stimulates the Na+-K+ pump in isolated rabbit cardiac myocytes. J Physiol. 2005; 565:815-825. https:// doi.org/10.1113/jphysiol.2005.086447. PMid:15817632 PMCid:PMC1464570.

White CN, Hamilton EJ, Garcia A, Wang D, Chia KKM, Figtree GA, Rasmussen HH. Opposing effects of coupled and uncoupled NOS activity on the Na +-K+ pump in cardiac myocytes. Am J Physiol. - Cell Physiol. 2008; 294:572-579. https://doi.org/10.1152/ajpcell.00242.2007. PMid:18057120.

Gupta S, McArthur C, Grady C, Ruderman N. Stimulation of vascular Na+/K+-ATPase activity by nitric oxide: a cGMP-independent effect. Am J Physiol. 1994; 266:H2146H2151. https://doi.org/10.1017/CBO9781107415324.004.

Vlkovićová J, Javorková V, Mézešová L, Pecháňová O, Vrbjar N. Regulatory role of nitric oxide on the cardiac Na,KATPase in hypertension. Physiol Res. 2008; 57(2):S15-S22. https://doi.org/10.16136/j.joel.2015.05.0903.

Muriel P, Sandoval G. Nitric oxide and peroxynitrite anion modulate liver plasma membrane fluidity and Na+/K+-ATPase activity. Nitric Oxide - Biol Chem. 2000; 4:333-342. https://doi.org/10.1006/niox.2000.0285.

PMid:10944417.

Peter VS. Nitric oxide rectifies acid-base disturbance and modifies thyroid hormone activity during net confinement of air-breathing fish (Anabas testudineus Bloch). Gen Comp Endocrinol. 2013; 181:115-121. https://doi.org/10.1016/j.ygcen.2012.10.011. PMid:23153653.

Valles PG, Manucha WA. H+ATPase activity on unilateral ureteral obstruction: Interaction of endogenous nitric oxide and angiotensin II. Kidney Int. 2000; 58:16411651. https://doi.org/10.1046/j.1523-1755.2000.00325.x. PMid:11012898

Gayathry R, Peter VS, Peter MCS. Nitric oxide drives mitochondrial energetics in heart and liver mitochondria of hypoxia-stressed climbing perch (Anabas testudineus Bloch). J Endocrinol Reprod. 2018; 22(1):1-14.

Alexandre H, Mathieu B, Charpentier C. Alteration in membrane fluidity and lipid composition, and modification of H+ATPase activity in Saccharomyces cerevisiae caused by decanoic acid. Microbiology. 1996; 142(3):469-475. https:// doi.org/10.1099/13500872-142-3-469. PMid:8868421.

Baratta VM, Norz V, Barahona MJ, Gisinger TM, Mulligan D, Geibel JP. Pencillin G induces H+,K+ATPase via a nitric oxide-dependent mechanism in the rat colonic crypt. Cell Physiol Biochem. 2020; 54:1132-1142. https://doi.org/10.33594/000000305. PMid:33175479.

BucklerKJ, Vaughan-Jones RD. Effects of mitochondrial uncouplers on intracellular calcium, pH and membrane potential in rat carotid body type I cells. J Physiol. 1998; 513: 819-833. https://doi.org/10.1111/j.14697793.1998.819ba.x. PMid:9824720 PMCid:PMC2231310.

WyattCN, Wright C, Bee D, Peers C. O-2-Sensitive K+ currents in carotid-body chemoreceptor cells from normoxic and chronically hypoxic rats and their roles in hypoxic chemotransduction. Proc Natl Acad Sci USA. 1995; 92:295-299. https://doi.org/10.1073/pnas.92.1.295. PMid:7529413 PMCid:PMC42865.

Gattuso A, Garofalo F, Cerra MC, Imbrogno S. Hypoxia tolerance in teleosts: Implications of cardiac nitrosative signals. Front Physiol. 2018; 9:1-13. https://doi.org/10.3389/ fphys.2018.00366. PMid:29706897 PMCid:PMC5906588.

Most read articles by the same author(s)

<< < 1 2 3 > >>