Synergistic Interplay of Hyperandrogenism and Hyperinsulinism on Primary Culture of Luteinized Granulosa Cells – an "in-vitro” Model Mimicking Ovarian Microenvironment of Poly-Cystic Ovary Syndrome (PCOS)

Jump To References Section

Authors

  • Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat - 390002 ,IN
  • Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat - 390002 ,IN
  • Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat - 390002 ,IN
  • Department of Biochemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat - 390002 ,IN ORCID logo http://orcid.org/0000-0001-8482-1153

DOI:

https://doi.org/10.18311/jer/2020/26764

Keywords:

Hyperinsulinemia, Hyperandrogenemia, Luteinized Granulosa Cells, Polycystic Ovary Syndrome, Primary Culture, Steroidogenesis
Endocrinology

Abstract

Poly-Cystic Ovary Syndrome (PCOS) is the most prevalent endocrine disorder, characterized by hyperandrogenism and hyperinsulinemia, both at systemic and ovarian levels. This study investigated the synergistic effect of hyperinsulinemia and hyperandrogenism on the regulatory mechanism of ovarian steroidogenesis using Luteinized Granulosa Cells (LGCs). LGCs were isolated from 40 weaning female Charles Foster rats by superovulation by PMSG and characterized for purity and stability in modified DMEM: F12 media. The isolated cells were divided into following groups- control, hyperinsulinic group (0.1-2 mIU/ mL of insulin), excess androgen (10-100 ng/mL of DHT) and combination of both. One-way ANOVA was performed with a Bonferroni post-hoc test. Results demonstrate that the LGCs exhibit reduced expression of FSHR and CYP19A and increased expression of LHR, StAR and CYP17A1 at 72 hours. There was reduction in cell viability of LGCs when induced with hyperinsulin and hyperandrogen doses individually or in combination.0.1 mIU/mL of insulin and 50 ng/mL of DHT in combination were the minimum effective dose in inducing PCO like ovarian microenvironment in the primary culture of LGCs. There was exaggerated androgen biosynthesis, reduced progesterone secretion and non-significant change is estradiol levels in the LGCs. The abnormal steroidogenesis can be attributed to upregulation of key genes such as StAR, CYP17A1, AMH and SREBP1-c and down-regulation of genes like CYP19A1, HSD3B2, IGFBP1 and SHBG. This model can be used to study downstream signaling pathways involved with dysregulated ovarian microenvironment as observed in PCOS at cellular level and for screening of drug targets for such pathological conditions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2021-04-16

How to Cite

Dey, A., Mehta, I., Ghosh, P., & Nampoothiri, L. (2021). Synergistic Interplay of Hyperandrogenism and Hyperinsulinism on Primary Culture of Luteinized Granulosa Cells – an "<i>in-vitro</i>” Model Mimicking Ovarian Microenvironment of Poly-Cystic Ovary Syndrome (PCOS). Journal of Endocrinology and Reproduction, 24(1), 53–65. https://doi.org/10.18311/jer/2020/26764

Issue

Section

Original Research

 

References

Rosenfield RL, Ehrmann DA. The pathogenesis of PolyCystic Ovary Syndrome (PCOS): The hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr. Rev. 2016; 37(5):467-520. https://doi.org/10.1210/er.20151104. PMid:27459230 PMCid:PMC5045492.

Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr. Rev. 2012; 33(6):981-1030. https://doi.org/10.1210/er.2011-1034. PMid:23065822 PMCid:PMC5393155.

Poretsky L, Glover B, Laumas V, KALIN M, Dunaif A. The effects of experimental hyperinsulinemia on steroid secretion, ovarian [125I] insulin binding, and ovarian [125I] insulin-like growth-factor I binding in the rat. Endocrinology. 1988; 122(2):581-585. https://doi.org/10.1210/endo-122-2-581. PMid:2962853.

Polak K, Czyzyk A, Simoncini T, Meczekalski B. New markers of insulin resistance in polycystic ovary syndrome. J. Endocrinol. Invest. 2017; 40(1):1-8. https:// doi.org/10.1007/s40618-016-0523-8. PMid:27473078 PMCid:PMC5206255.

Li A, Zhang L, Jiang J, Yang N, Liu Y, Cai L, Cui Y, Diao F, Han X, Liu J, Sun Y. Follicular hyperandrogenism and insulin resistance in polycystic ovary syndrome patients with normal circulating testosterone levels. J. Biomed. Res. 2018; 32(3):208.

Rojas J, Chávez M, Olivar L, Rojas M, Morillo J, Mejí­as J, Calvo M, Bermúdez V. Polycystic ovary syndrome, insulin resistance, and obesity: Navigating the pathophysiologic labyrinth. Int. J. Reprod.. 2014; 2014. https://doi.org/10.1155/2014/719050. PMid:25763405 PMCid:PMC4334071.

Hasegawa T, Kamada Y, Hosoya T, Fujita S, Nishiyama Y, Iwata N, Hiramatsu Y, Otsuka F. A regulatory role of androgen in ovarian steroidogenesis by rat granulosa cells. J. Steroid Biochem. Mol. 2017 172:160-165. https://doi.org/10.1016/j.jsbmb.2017.07.002. PMid:28684382.

Ehrman DA, Barnes RB, Rosenfield RL. Polycystic ovary syndrome as a form of functional ovarian hyperandrogenism due to dysregulation of androgen secretion. Endocr. Rev. 1995; 16(3):322-353. https://doi.org/10.1210/edrv-16-3322. PMid:7671850.

Goodarzi MO, Dumesic DA, Chazenbalk G, Azziz R. Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat. Rev. Endocrinol. 2011; 7(4):219-231. https://doi.org/10.1038/nrendo.2010.217. PMid:21263450.

Li A, Zhang L, Jiang J, Yang N, Liu Y, Cai L, Cui Y, Diao F, Han X, Liu J, Sun Y. Follicular hyperandrogenism and insulin resistance in polycystic ovary syndrome patients with normal circulating testosterone levels. J. Biomed. Res. 2018; 32(3):208.

Costa LO, Mendes MC, Ferriani RA, Moura MD, Reis RM, Silva de Sá MF. Estradiol and testosterone concentrations in follicular fluid as criteria to discriminate between mature and immature oocytes. BJMBR. 2004; 37(11):17471755. https://doi.org/10.1590/S0100-879X2004001100021. PMid:15517092.

Roe AH, Prochaska E, Smith M, Sammel M, Dokras A. Using the Androgen Excess-PCOS Society criteria to diagnose polycystic ovary syndrome and the risk of metabolic syndrome in adolescents. J. Pediatr. 2013; 162(5):937941. https://doi.org/10.1016/j.jpeds.2012.11.019. PMid:23260096.

Campbell KL. Ovarian granulosa cells isolated with EGTA and hypertonic sucrose: cellular integrity and function. Biology of Reproduc.. 1979; 21(4):773-786. https://doi.org/10.1095/biolreprod21.4.773. PMid:118773.

Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol. 1997; 21(1):A-3B.

Baptiste CG, Battista MC, Trottier A, Baillargeon JP. Insulin and hyperandrogenism in women with polycystic ovary syndrome. J. Steroid Biochem Mol. 2010; 122(13):42-52. https://doi.org/10.1016/j.jsbmb.2009.12.010. PMid:20036327 PMCid:PMC3846536.

Yoshizawa A, Clemmons DR. Testosterone and Insulinlike Growth Factor (IGF) I interact in controlling IGF-binding protein production in androgen-responsive foreskin fibroblasts. J. Clin. Endocrinol. Metab. 2000; 85(4):1627-1633. https://doi.org/10.1210/jcem.85.4.6517. PMid:10770208.

Schüring AN, Schulte N, Sonntag B, Kiesel L. Androgens and insulin-two key players in polycystic ovary syndrome. Gynakol Geb. 2008; 48(1):9-15. https://doi.org/10.1159/000111465. PMid:18209494.

Kinnear HM, Tomaszewski CE, Chang FL, Moravek MB, Xu M, Padmanabhan V, Shikanov A. The ovarian stroma as a new frontier. Reproduc. 2020; 160(3):R25-R39. https:// doi.org/10.1530/REP-19-0501. PMid:32716007.

Belani M, Purohit N, Pillai P, Gupta S, Gupta S. Modulation of steroidogenic pathway in rat granulosa cells with subclinical Cd exposure and insulin resistance: An impact on female fertility. BioMed Res. Int. 2014; 2014. https://doi.org/10.1155/2014/460251. PMid:25210711 PMCid:PMC4157004.

Arcos A, de Paola M, Gianetti D, Acuña D, Velásquez ZD, Miró MP, Toro G, Hinrichsen B, Muñoz RI, Lin Y, Mardones GA. α-SNAP is expressed in mouse ovarian granulosa cells and plays a key role in folliculogenesis and female fertility. Sci. Rep. 2017; 7(1):1-4. https://doi.org/10.1038/s41598017-12292-9. PMid:28924180 PMCid:PMC5603506.

Piquette GN. Isolation and characterization of rabbit ovarian surface epithelium, granulosa cells, and peritoneal mesothelium in primary culture. In Vitro Cell. Dev. Biol. 1990; 26(5):471-81. https://doi.org/10.1007/BF02624089. PMid:1693612.

Gutierrez CG, Campbell BK, Webb R. Development of a long-term bovine granulosa cell culture system: induction and maintenance of estradiol production, response to follicle-stimulating hormone, and morphological characteristics. Biol. Reprod. 1997; 56(3):608-616. https://doi.org/10.1095/biolreprod56.3.608. PMid:9047004.

Cai L, Sun A, Li H, Tsinkgou A, Yu J, Ying S, Chen Z, Shi Z. Molecular mechanisms of enhancing porcine granulosa cell proliferation and function by treatment in vitro with antiinhibin alpha subunit antibody. Reprod. Biol. Endocrinol. 2015; 13(1):1-0. https://doi.org/10.1186/s12958-015-00223. PMid:25889399 PMCid:PMC4395973.

Monga R, Sharma I, Datta TK, Singh D. Characterization of serum-free buffalo granulosa cell culture and analysis of genes involved in terminal differentiation from FSH-to LH-responsive phenotype. Domest Anim Endocrin. 2011; 41(4):195-206. https://doi.org/10.1016/j.domaniend.2011.07.001. PMid:21885231.

Belani M, Deo A, Shah P, Banker M, Singal P, Gupta S. Differential insulin and steroidogenic signaling in insulin resistant and non-insulin resistant human luteinized granulosa cells-A study in PCOS patients. J. Steroid Biochem Mol. 2018; 178:283-292. https://doi.org/10.1016/j.jsbmb.2018.01.008. PMid:29339197.

Naessen T, Kushnir MM, Chaika A, Nosenko J, Mogilevkina I, Rockwood AL, Carlstrom K, Bergquist J, Kirilovas D. Steroid profiles in ovarian follicular fluid in women with and without polycystic ovary syndrome, analyzed by liquid chromatography-tandem mass spectrometry. Fertil. Steril. 2010; 94(6):2228-2233. https://doi.org/10.1016/j.fertnstert.2009.12.081. PMid:20171618.

Mani AM, Fenwick MA, Cheng Z, Sharma MK, Singh D, Wathes DC. IGF1 induces up-regulation of steroidogenic and apoptotic regulatory genes via activation of phosphatidylinositol-dependent kinase/AKT in bovine granulosa cells. Reproduc. 2010; 139(1):139. https://doi.org/10.1530/REP-09-0050. PMid:19819918.

Doblado M, Zhang L, Toloubeydokhti T, Garzo GT, Chang RJ, Duleba AJ. Androgens Modulate Rat Granulosa Cell Steroidogenesis. Reprod. Sci. 2020:1-6. https:// doi.org/10.1007/s43032-019-00099-0. PMid:31916094 PMCid:PMC7539820.

Magoffin DA. Ovarian Steroidogenic Abnormalities in the Polycystic Ovary Syndrome. In Androgen Excess Disorders in Women. Humana Press. 2006; 203-211. https://doi.org/10.1007/978-1-59745-179-6_18.

Jonard S, Dewailly D. The follicular excess in polycystic ovaries, due to intra"ovarian hyperandrogenism, may be the main culprit for the follicular arrest. Hum. Reprod Update. 2004; 10(2):107-117. https://doi.org/10.1093/ humupd/dmh010. PMid:15073141.

Cadagan D, Khan R, Amer S. Thecal cell sensitivity to luteinizing hormone and insulin in polycystic ovarian syndrome. Reprod. Biol. 2016; 16(1):53-60. https://doi.org/10.1016/j.repbio.2015.12.006. PMid:26952754.

Jayagopal V, Kilpatrick ES, Jennings PE, Hepburn DA, Atkin SL. The biological variation of testosterone and sex hormone-binding globulin (SHBG) in polycystic ovarian syndrome: Implications for SHBG as a surrogate marker of insulin resistance. J. Clin. Endocrinol. Metab. 2003; 88(4):1528-1533. https://doi.org/10.1210/jc.2002-020557. PMid:12679434.

Aghaie F, Khazali H, Hedayati M, Akbarnejad A. The effects of exercise on expression of CYP19 and StAR mRNA in steroid-induced polycystic ovaries of female rats. Int J Fertil Steril. 2018; 11(4):298.

Kashar-Miller M, Azziz R. Heritability and the risk of developing androgen excess. J. Steroid Biochem Mol. 1999; 69(1-6):261-268. https://doi.org/10.1016/S09600760(99)00043-6.

Wickenheisser JK, Biegler JM, Nelson-DeGrave VL, Legro RS, Strauss III JF, McAllister JM. Cholesterol sidechain cleavage gene expression in theca cells: Augmented transcriptional regulation and mRNA stability in polycystic ovary syndrome. PloS one. 2012; 7(11):e48963. https:// doi.org/10.1371/journal.pone.0048963. PMid:23155436 PMCid:PMC3498373.

Comim FV, Teerds K, Hardy K, Franks S. Increased protein expression of LHCG receptor and 17α-hydroxylase/17-20lyase in human polycystic ovaries. Hum. Reprod. 2013; 28(11):3086-3092. https://doi.org/10.1093/humrep/det352. PMid:24014605.

Wickenheisser JK, Nelson-DeGrave VL, McAllister JM. Dysregulation of cytochrome P450 17α-hydroxylase messenger ribonucleic acid stability in theca cells isolated from women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2005; 90(3):1720-1727. https://doi.org/10.1210/jc.2004-1860. PMid:15598676.

Wickenheisser JK, Quinn PG, Nelson VL, Legro RS, Strauss III JF, McAllister JM. Differential activity of the cytochrome P450 17α-hydroxylase and steroidogenic acute regulatory protein gene promoters in normal and polycystic ovary syndrome theca cells. J. Clin. Endocrinol. Metab. 2000; 85(6):2304-2311. https://doi.org/10.1210/jcem.85.6.6631. PMid:10852468.

Knebel B, Janssen OE, Hahn S, Jacob S, Nitzgen U, Haas J, Muller-Wieland D, Kotzka J. Genetic variations in SREBP-1 and LXRα are not directly associated to PCOS but contribute to the physiological specifics of the syndrome. Mol. Biol. Rep. 2012; 39(6):6835-6842. https://doi.org/10.1007/s11033-012-1508-0. PMid:22311022.

Shafiee MN, Mongan N, Seedhouse C, Chapman C, Deen S, Abu J, Atiomo W. Sterol regulatory element binding protein"1 (SREBP1) gene expression is similarly increased in polycystic ovary syndrome and endometrial cancer. Acta Obstet Gyn Scan. 2017; 96(5):556-562. https://doi.org/10.1111/aogs.13106. PMid:28176325.

Tokmak A, Kokanali D, Timur H, Kuntay Kokanali M, Yilmaz N. Association between anti-Mullerian hormone and insulin resistance in non-obese adolescent females with polycystic ovary syndrome. Gynecol. Endocrinol. 2016; 32(11):926-930. https://doi.org/10.1080/09513590.2 016.1193140. PMid:27275748.

Nardo LG, Gelbaya TA, Wilkinson H, Roberts SA, Yates A, Pemberton P, Laing I. Circulating basal anti-Müllerian hormone levels as predictor of ovarian response in women undergoing ovarian stimulation for in vitro fertilization. Fertil. Steril. 2009; 92(5):1586-1593. https:// doi.org/10.1016/j.fertnstert.2008.08.127. PMid:18930213.

Pigny P, Merlen E, Robert Y, Cortet-Rudelli C, Decanter C, Jonard S, Dewailly D. Elevated serum level of antimullerian hormone in patients with polycystic ovarysyndrome: relationship to the ovarian follicle excess and to the follicular arrest. J. Clin. Endocrinol. Metab. 2003; 88(12):5957-5962. https://doi.org/10.1210/jc.2003-030727. PMid:14671196.

Dewailly D, Pigny P, Decanter C, Robert Y. Elevated serum level of Anti-Müllerian Hormone (AMH) in Polycystic Ovary Syndrome (PCOS): relationship to the ovarian follicle excess and to the serum FSH and to the follicular arrest. Fertil. Steril. 2003; 80:276. https://doi.org/10.1016/ S0015-0282(03)01703-5.

Wiweko B, Maidarti M, Priangga MD, Shafira N, Fernando D, Sumapraja K, Natadisastra M, Hestiantoro A. Antimullerian hormone as a diagnostic and prognostic tool for PCOS patients. J Assist Reprod Genet. 2014; 31(10):13111316. https://doi.org/10.1007/s10815-014-0300-6. PMid:25119192 PMCid:PMC4171421.

Pellatt L, Hanna L, Brincat M, Galea R, Brain H, Whitehead S, Mason H. Granulosa cell production of anti-Mullerian hormone is increased in polycystic ovaries. J. Clin. Endocrinol. Metab. 2007; 92(1):240-245. https://doi.org/10.1210/jc.2006-1582. PMid:17062765.

Karkanaki A, Vosnakis C, Panidis D. The clinical significance of anti-Müllerian hormone evaluation in Gynecol. Endocrinol. Hormones. 2011; 10(2):95-103. https://doi.org/10.14310/horm.2002.1299. PMid:21724534.

Pierre A, Peigné M, Grynberg M, Arouche N, Taieb J, Hesters L, Gonzalès J, Picard JY, Dewailly D, Fanchin R, Catteau-Jonard S. Loss of LH-induced down-regulation of anti-Müllerian hormone receptor expression may contribute to anovulation in women with polycystic ovary syndrome. Hum. Reprod. 2013; 28(3):762-769. https://doi.org/10.1093/humrep/des460. PMid:23321213.

Chang RJ, Cook-Andersen H. Disordered follicle development. Mol Cell Endocrinol. 2013; 373(1-2):51-60. https://doi.org/10.1016/j.mce.2012.07.011. PMid:22874072 PMCid:PMC3727408.

Chaves RN, Duarte AB, Rodrigues GQ, Celestino JJ, Silva GM, Lopes CA, Almeida AP, Donato MA, Peixoto CA, Moura AA, Lobo CH. The effects of insulin and folliclestimulating hormone (FSH) during in vitro development of ovarian goat preantral follicles and the relative mRNA expression for insulin and FSH receptors and cytochrome P450 aromatase in cultured follicles. Biol. Reprod. 2012; 87(3):69,1-11. https://doi.org/10.1095/ biolreprod.112.099010. PMid:22811569.

Franks S, Stark J, Hardy K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum. Reprod Update. 2008; 14(4):367-378. https://doi.org/10.1093/ humupd/dmn015. PMid:18499708.

Franks S, Mason H, White D, Willis D. Etiology of anovulation in polycystic ovary syndrome. Steroids.

; 63(5-6):306-307. https://doi.org/10.1016/S0039128X(98)00035-X.

Yang F, Ruan YC, Yang YJ, Wang K, Liang SS, Han YB, Teng XM, Yang JZ. Follicular hyperandrogenism downregulates aromatase in luteinized granulosa cells in polycystic ovary syndrome women. Reproduc. 2015; 150(4):289-296. https://doi.org/10.1530/REP-15-0044. PMid:26199450.

Doldi N, Grossi D, Destefani A, Gessi A, Ferrari A. Polycystic ovary syndrome: evidence for reduced 3β-hydroxysteroid dehydrogenase gene expression in human luteinizing granulosa cells. Gynecol. Endocrinol. 2000; 14(1):3237. https://doi.org/10.3109/09513590009167657. PMid:10813104.

Dadachanji R, Shaikh N, Mukherjee S. Genetic variants associated with hyperandrogenemia in PCOS pathophysiology. Genet. Res. Int. 2018; 2018. https:// doi.org/10.1155/2018/7624932. PMid:29670770 PMCid:PMC5835258.

Fowler DJ, Nicolaides KH, Miell JP. Insulin-like growth factor binding protein-1 (IGFBP-1): a multifunctional role in the human female reproductive tract. Hum. Reprod Update. 2000; 6(5):495-504. https://doi.org/10.1093/ humupd/6.5.495. PMid:11045880.