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Abstract
PCOS is a gynecological and metabolic concern for numerous women of reproductive age. Its pathophysiology broadly 
entails hyperandrogenism, insulin resistance, and neuroendocrine dysfunction, and is heavily influenced by genetic 
and epigenetic factors. However, its precise aetiology remains unclear. The gut microbiome is a major endocrine 
organ and plays a key role in host metabolism through its metabolites which regulate diverse host physiology like 
metabolism, immunity, etc. Numerous studies have described associations of altered microbiota in the progress 
and development of major human diseases. The studies conducted on animals and humans have suggested that 
the gut microbiota and its metabolites are involved in the pathogenesis of PCOS and its associated attributes such 
as insulin resistance, obesity and inflammation. Moreover, supplementation of probiotics/prebiotics has been 
reported to relieve the adverse metabolic and hormonal parameters effectively. Knowledge of this link between gut 
dysbiosis and PCOS has also spurred research interest in exploring novel management of PCOS. In this review, we 
have discussed the role of gut microbiota dysbiosis and its metabolite in the progression and treatment of PCOS. 

1.  Introduction
Polycystic Ovary Syndrome (PCOS) is the most common 
endocrine disorder observed in women of reproductive 
age, with a global prevalence ranging from 2.2-48 %1. It is 
characterized by skewed LH:FSH ratio, Hyperandrogenism 
(HA), Polycystic Ovarian Morphology (PCOM) and 
Anovulation/Oligomenorrhoea (OA). About 50% of 
women with PCOS are obese, and 60-70 % are insulin 
resistant2. Women with PCOS are at higher risk of 
developing Type 2 Diabetes mellitus (T2D), dyslipidemia, 
metabolic syndrome and cardiovascular disease3. Sets of 
criteria are laid for diagnosing PCOS, with the National 
Institute of Health (NIH), 1990, being the first to 
establish the condition on the presence of clinical and/
or biochemical hyperandrogenism and oligo/amenorrhea 

anovulation. The Rotterdam consensus criteria, 2003, 
requires the presence of any two of three features: 
anovulation or oligo-ovulation, hyperandrogenism and 
polycystic ovarian morphology seen on ultrasound for the 
diagnosis of PCOS. Later, the Androgen Excess Society 
defined PCOS as the presence of hyperandrogenism 
and either polycystic morphology or/and anovulation/
oligomenorrhea2. As this is a complex heterogeneous 
disorder with various characteristic features, a meeting by 
the National Institute of Health (NIH) in 2012 proposed 
characterizing the disease based on a phenotype 
observed using the Rotterdam criteria. The four different 
phenotypes observed are Phenotype A (HA + OA + 
PCOM), phenotype B (HA + OA), phenotype C (HA + 
PCOM) and Phenotype D (PCOM + OA) (Evidence-
based Methodology Workshop (EbMW) program, 2012).
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2. Pathophysiology of PCOS 
The pathophysiology of PCOS is multifactorial and 
includes neuroendocrine dysfunction, hyperandrogenism 
and insulin resistance. The GnRH pulse frequency is high 
in women with PCOS, leading to increased LH secretion 
and skewed LH: FSH ratio. This impacts the normal 
folliculogenesis process leading to follicular growth arrest 
at the preantral stage, which fails to select the dominant 
follicle leading to anovulation. Excessive secretion of LH 
and insulin leads to increased androgen levels, leading 
to follicular arrest. Hyperinsulinemia is a compensatory 
mechanism for insulin resistance often seen in women 
with PCOS and is suggested to be a result of a defect in 
post-insulin receptor binding. 

Further, hyperinsulinemia is known to induce 
androgen synthesis both directly and indirectly. Insulin is 
reported to stimulate the activity of enzymes involved in 
the steroidogenesis pathway; it increases 17-a-hydroxylase 
and 17-20 lyase activity of enzyme P450c17, which is the 
rate-limiting enzyme in the production of androgens in 
both luteinized theca cells and adrenal glands. Insulin also 
decreases the levels of Sex Hormone Binding Globulin 
(SHBG), increasing the levels of free testosterone4. A state 
of chronic low-grade inflammation and oxidative stress5 
also characterizes the syndrome. An increase in Reactive 
Oxygen Species (ROS) production leading to oxidative 
stress has been known to play a role in the aetiology of 
PCOS6. ROS is known to induce insulin resistance through 
mitochondrial dysfunction leading to the production of 
TNF-α. ROS also induces hyperandrogenism and affects 
oocyte quality6.

PCOS has a strong genetic component confirmed by 
studies reporting the prevalence of the disease up to 55-60 
% in a first-degree relative of PCOS women. In comparison, 
twin studies have reported 72% genetic variance in risk 
of PCOS7. Several candidate gene studies and GWAS 
have been conducted to identify genetic predisposition 
profiles in PCOS in different ethnic populations. These 
studies have reported an association of PCOS and its 
related phenotypes with various polymorphisms in genes 
involved in steroidogenesis, hypothalamic-pituitary axis 
function, and metabolic and inflammatory pathways8

.  
Although it is clear that PCOS is a multigenic syndrome, 
no genetic biomarker has been established yet. In addition 
to genetic association, epigenetic changes in adipose 

tissue and granulosa cells have also been reported to play 
a role in the pathology of the disease9.

The gut is a major endocrine organ harbouring 
trillions of microorganisms, mainly bacteria, viruses, and 
fungi. The gut microbiota is involved in the digestion 
of indigestible carbohydrates, producing metabolites 
beneficial to the host, metabolism of proteins, nutrients, 
and immune functions. The gut microbiome encodes 
enzymes that convert non-digestible dietary fibers 
to gases and Short-Chain Fatty Acids (SCFA). Gut 
microbiota metabolizes proteins into peptides, branched 
fatty acids and gases like ammonia, H2, CO2, and H2S 
due to its wide range of proteolytic enzyme activity. Gut 
microbiota is also known to synthesize vitamins like 
vitamin K and vitamin B complex, including biotin, 
cobalamin, folates, nicotinic acid, etc., and maintain the 
diversity of the bile acid pool10. Gut microbiota is also 
known to modulate the regulation and development of 
innate and adaptive immune components. A mechanical 
and immune barrier mechanism exists to prevent the 
interaction of gut microbiota and with the host so as not 
to cause immune system activation11. Gut microbiota 
dysbiosis may be defined as the loss of beneficial microbes 
resulting in atypical changes in its role in metabolism 
and energy homeostasis leading to inflammation. 
Gut microbiota dysbiosis is associated with various 
autoimmune conditions, neurodegenerative diseases, 
metabolic diseases like obesity, insulin resistance, and 
cardiovascular diseases12.

Despite rigorous efforts, the pathophysiology of 
PCOS remains largely elusive to date. In 2012, an 
interesting theory was hypothesized by Tremellen et al., 
known as the Dysbiosis of Gut Microbiota (DOGMA), to 
elucidate the aetiology of PCOS. The authors proposed 
that the imbalance in gut microbiota due to a high-
fat diet leads to disruption of intestinal epithelial cells, 
thereby increasing gut mucosa’s permeability and leading 
to Lipopolysaccharide (LPS) leakage in the gut, resulting 
in chronic inflammation and insulin resistance13. Studies 
have drawn attention to a relationship between gut 
microbiota dysbiosis with obesity, insulin resistance 
and chronic inflammation, which are often observed in 
women with PCOS. Evidence on gut microbiota dysbiosis 
in women with PCOS has emerged recently, which has 
shown an association with markers of hyperandrogenism, 
insulin resistance, inflammation and metabolic syndrome 
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in them. Further, treatments directed towards improving 
gut health, such as supplementation of probiotics and 
fecal microbiota transplantation to manage PCOS, have 
also been explored14. 

3. Composition of Gut Microbiota
Gut microbiome mapping projects such as the NIH 
Human Microbiome Project (HMP), the integrative HMP 
(iHMP), and the Metagenomics of the Human Intestinal 
Tract (MetaHIT) have enhanced our understanding of 
host-microbiome interaction15.

The gut comprises the stomach and small and large 
intestines, each with different physiological environments 
that can harbour different microorganisms. Acid-
resistant bacterial strains like Streptococcus, Neisseria 
and Lactobacillus mainly inhabit the acidic conditions 
of the stomach.  The duodenum being aerobic, 
consists of bacteria belonging to phyla Firmicutes and 
Actinobacteria. In contrast, the jejunum consists of both 
aerobic Gram-positive and facultative anaerobic bacteria 
like Lactobacilli, Enterococci and Streptococci. The distal 
end of the small intestine mostly consists of anaerobes 
and Gram-negative organisms15. The large intestine 
has the highest density of anaerobes, with Bacteroides, 
Bifidobacterium, Streptococcus, Enterobacteriaceae, 
Enterococcus, Clostridium, Lactobacillus and Ruminococcus 
being the predominant microbes15. 

The microbiota composition varies at different stages 
of development and depends on diet, gender, ethnicity 
and geographical origin. The most commonly found taxa 
in the gut belong to the phyla Firmicutes, Bacteroidetes, 
Actinobacteria, Fusobacteria, Proteobacteria, 
Verrucomicrobia and Cyanobacteria16. The Bacteroidetes 
and Firmicutes constitute more than 90% of the total 
population. Firmicutes have a higher capacity to harvest 
energy from food17, and Bacteroides are often termed 
as friendly commensals, although they could also be 
pathogenic. The Firmicutes to Bacteroides (F/B) ratio 
is often determined to assess host health status and is 
influenced by sex, age and diet. An altered ratio is reported 
to be associated with obesity, T2D, inflammatory disease 
and certain cancers18,19. 

The genome of the gut microbiota is called the 
microbiome and is about 150 times greater than that 
of the host20. The microbiome, together with the host 
genome, is known as the hologenome. Studies to 

determine the composition of gut microbiome use two 
approaches, 16s rRNA amplicon sequencing and whole 
genome sequencing. A commonly used approach for 
bacterial identification is 16s rRNA sequencing, which 
involves sequencing 16S rRNA gene hypervariable 
regions to assign bacterial taxa. Metagenomics or whole 
genome sequencing also provides information on the 
functional genes in the sample. With advancements in 
next-generation sequencing, many studies involving 
varied conditions have reported alterations in microbiota 
composition, popularly defined by diversity indices such 
as alpha and beta diversity. Alpha diversity is defined as 
the estimation of richness (number of taxonomic groups 
observed) and evenness (abundance of the group) in an 
ecosystem or within a sample. Beta diversity estimates 
the difference in richness and evenness between two 
ecosystems or two samples21. It has become an area of 
interest to examine the causative links behind these 
changes and their possible link to PCOS pathophysiology.

4.  Gut Microbiota Dysbiosis in 
PCOS Animal Model

Gut microbiota is complex and plays a key role in host 
metabolism. Studies have shown that Fecal Microbiota 
Transplantation (FMT) from ob/ob mice to germ-free 
mice resulted in increased body weight in them17. In 
another study, FMT from lean donors into individuals 
with metabolic syndrome improved insulin sensitivity22. 
Alteration in gut microbial composition is associated 
with various conditions like obesity, insulin resistance 
and inflammation, all of which are characteristic features 
of PCOS as well.

Several animal models to study PCOS have been 
developed, which include non-human primates, sheep 
and rodents, developed by prenatal, prepubertal or adult 
exposure to Testosterone (T) or Dihydrotestosterone 
(DHT), which display characteristic reproductive and 
metabolic features of PCOS23. Reports of gut microbiota 
dysbiosis playing a role in the aetiology of PCOS have 
emerged mainly using rodent models.

In a first-ever study, Kelley et al. observed diet-
independent dysregulation of gut microbiota in a 
letrozole-induced PCOS mouse model with a decrease 
in alpha diversity which was inversely correlated with 
testosterone levels24. In another study, control and DHT-
induced PCOS rats fed with varying concentrations 
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of protein, carbohydrate and fat diets showed altered 
beta diversity25. This suggests the importance of diet 
modulation in controlling gut microbiota dysbiosis and 
PCOS. Further, hyperandrogenemia and high-fat diet 
synergistic actions have been reported to decrease gut 
microbial diversity and increase plasma inflammatory 
markers in DHT rats26. Torres et al. indicated that 
co-housing of letrozole-induced PCOS mice with placebo 
mice ameliorated PCOS metabolic and reproductive 
phenotypes27. This is one of the early studies which 
supports the therapeutic approach of FMT in the 
management of this syndrome. Thus, studies in rodents 
indicate a strong correlation between gut microbiota and 
PCOS pathophysiology.

5.  Gut Microbiota Dysbiosis in 
Women with PCOS

Several studies report lower alpha diversity and beta 
diversity in women with PCOS compared to healthy 
control, respectively14. In a pilot study by Lindheim et al.,  
the alpha diversity in PCOS women was 15% lower with 
a significantly lower abundance of members of phylum 
Tenericutes28. The gut of women with PCOS is depleted of 
beneficial bacteria and is enriched with opportunistic or 

pro-inflammatory pathogens like Escherichia spp., Shigella 
spp., Enterobacteria phage SfV, and Parabacteroides 
merdae29,30. Gut dysbiosis could be detected from early 
age, as seen in another study in adolescent girls with 
PCOS which showed lower alpha diversity, accompanied 
by a lower abundance of Bacteroidaceae compared to 
non-PCOS adolescent girls31,32. Torres et al. reported a 
low abundance of SCFA-producing bacteria in PCOS 
women33, which could partially explain increased 
serum levels of zonulin and calprotectin, markers of gut 
permeability and inflammation, respectively, observed in 
them34.

The close relationship among obesity, PCOS and gut 
microbiota has also been investigated, and gut microbiota 
composition, in terms of bacteria and fungi, was found to 
be different between lean and obese women with PCOS 
and their respective control counterparts35. Liu et al. 
found that the gut of obese PCOS women is enriched with 
Gram-negative LPS-producing bacteria and a decrease 
in spore-forming bacteria with an increased ratio of 
Escherichia/Shigella, similar to the microbial composition 
of obese non-PCOS women36. Obese women with PCOS 
are also stated to have an increased abundance of the 
Catenibacterium and Kandleria genera, previously linked 
to infectious and autoimmune disorders37. The enrichment 

Reference Ethnicity Study Population Outcomes in the PCOS group
Lindheim 

et al., 201728 Austrian  PCOS (n = 24);
Control (n = 19)

Reduced alpha diversity and altered 
beta diversity

Liu 

et al., 201736 Chinese

Obese PCOS (n = 21); 
Non-obese PCOS (n = 12); 

Obese controls (n = 6);
non-obese (n = 9)

Reduced alpha diversity 

Insenser 

et al., 201852 Spanish

Obese PCOS (n = 8);
 Non-obese PCOS (n = 7); 

Obese control (n = 8);
Non obese control (n = 8)

Reduced beta diversity in obese 
PCOS women compared to their

 lean counterpart 

Torres 

et al., 201848 Polish
PCOS (n = 73); 

Control (n = 48); 
women with PCOM (n = 42)

Reduced alpha diversity, 
altered beta diversity

Zeng 
et al., 201942 Chinese

IR-PCOS (n = 9);
Non-IR PCOS (n = 8);

Controls (n = 8)
Alteration in gut microbial composition 

Qi et al.,
201943 Chinese PCOS (n = 50);

Control (n = 43) Reduced beta diversity

Lull et al.,
202044 Finnish  PCOS(n = 102);

 Control(n = 210) No difference

Table 1. Summary of studies of gut microbiota in women with PCOS
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Mammadova 

et al., 202039 Turkish PCOS (n = 24);
Control (n = 22) No difference

Eyupoglu 
et al., 202045 Turkish PCOS (n = 17);

Control (n = 15) No difference

Chu 
et al., 202030 Chinese

Obese PCOS (n = 7);  
Non-obese PCOS (n = 7)); 

Obese Control (n = 7);
Non-obese control (n = 7) 

Observed microbial species difference 

Liang
et al., 202046 Chinese

Obese PCOS (n = 8);
Non obese (n = 10);

Control (n = 9)

Reduced alpha diversity, altered beta 
diversity

Zhou et al.,
202035 Chinese

Obese PCOS (n = 30); 
Non-obese (n = 30); 

Obese controls (n = 11); 
Non-obese (n = 30)

Gut microbial composition alteration

Jobira 
et al., 2020 American  PCOS (n = 37);

 Control (n = 21)
Reduced alpha diversity, altered beta 

diversity

Haudum 
et al., 202047 Austria PCOS (n = 24);

Control (n = 20) Reduced alpha diversity

Zhou et al.,
202048 Chinese PCOS (n = 18 obese); 

Control (n = 15 non obese) Reduced alpha diversity

Liang et al.,
202149 Chinese

Lean PCOS (n = 10); 
Overweight PCOS (n = 10) 10); 

Lean control (n = 10); 
Overweight control (n = 10)

Gut microbial composition alteration

Beltran et al., 
202131 Spanish PCOS (n = 23);

Control (n = 31) Reduced alpha diversity

He and Li, 
202150 Chinese

IR-PCOS (n = 14); 
Non-IR PCOS (n = 12); 

Control (n = 10)

Gut microbial composition different between 
IR PCOS, non-IR PCOS and control

Dong 
et al., 202151 Chinese PCOS (n = 45);  

 Control (n = 37) Reduced alpha diversity a

Chen 
et al., 202152 Chinese PCOS (n = 98);  

Control (n = 38)
Reduced alpha diversity, altered beta 

diversity 
Zhu 

et al, 202153 Chinese PCOS (n = 54);  
Control (n = 33) Reduced alpha diversity

Yang 

et al., 202154 Chinese PCOS (n = 56);   
Control (n = 31)

Increased alpha diversity, altered beta 
diversity

Yang 
et al., 202229 Chinese PCOS(n = 32); 

Control (n = 18)
Reduced alpha diversity, altered beta 

diversity

Hassan 

et al., 202241 Indian PCOS (n = 19); 
Control (n = 20) Increased alpha diversity

Yu et al., 202255 Chinese PCOS (n = 20);
Control (n = 20) Reduced alpha diversity

 a Not significant when sub-grouped; IR-Insulin resistance; non-IR- non-insulin resistance
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of Lactobacillus, Prevotella, and Megamonas was observed 
in obese women with PCOS, whereas Lactococcus, 
Paraprevotella, Alloprevotella, and Clostridium cluster 
XIVb were enriched in the non-obese PCOS women35,36,38-

40.
Table 1 summarizes the studies on the association 

of gut microbiota in women with PCOS. Most of the 
available studies have been carried out in European 
and Chinese populations and have reported contrasting 
results regarding significant changes in alpha and beta 
diversity in women with PCOS. A single Indian study in 
Kashmiri women has been reported thus far, indicating 
increased microbial diversity in women with PCOS41.

Although studies carried out so far have not 
conclusively pinpointed the abundance of any particular 
microbe influencing PCOS, the compositional alteration 
of gut microbiota is evident in women with PCOS. The 
differences in the results may be attributed to phenotypes 
of PCOS, age of the participants enrolled and other 
confounding factors like ethnicity, dietary habits, and 
lastly, the relatively small sample sizes used so far. Further 
use of different methodologies for the collection and 
processing of stool samples and analytical approaches for 
interpreting the metagenomic data may also influence 
these observations.

6.  Association of Sex Hormones 
with Gut Microbiota in PCOS

The potential relationship of sex hormone levels with the 
gut microbiota has been termed as “microgenderome”. 
The relationship between host and microbiota is 
bidirectional and is gender-dependent20. Women’s gut 
microbiota composition markedly differs from men’s, 
indicating an influence of sex hormones on microbiota 
composition and these changes often occur after puberty 
under the influence of sex steroids56,21. As mentioned 
earlier, women with PCOS present with androgen excess 
along with altered levels of estrogen and progesterone, 
and this hormonal dysregulation could further alter 
the composition of the microbiota and its associated 
metabolites.  

Estrobolome is a group of gut microbes known to 
regulate estrogen levels in the host. This group of bacteria 
secretes the β-glucuronidase enzyme that deconjugates 
estrogen, thereby preventing its excretion and allowing its 
reabsorption in the gut. Lowered enzyme activity due to 

a decrease in the diversity of gut microbiota was found to 
decrease estrogen levels in the host leading to conditions 
like metabolic syndrome, cardiovascular diseases etc57. 
On the other hand, an increased enzyme activity leads to 
the release of high levels of hormone into enterohepatic 
circulation leading to condition like endometrial 
cancer etc58. β- glucuronidase activity was found to be 
significantly high in fecal samples of women with PCOS59, 
which could partially account for the dysregulated levels 
of estrogen observed in them. PCOS rats receiving FMT 
from healthy rats showed elevated levels of estradiol and 
estrone, indicating that alterations in gut microbiota 
can result in fluctuations in hormone levels. In another 
study, ovariectomized female mice showed an increased 
abundance of LPS-producing Escherichia/Shigella 
compared to control60.

Studies have shown that exposure to androgens in 
utero, during the prenatal or neonatal period, results in 
the development of PCOS phenotype at the adult stage. 
This also results in gut microbiota dysbiosis characterized 
by decreased alpha diversity and metabolic complications 
such as glucose homeostasis, obesity, hypertension, 
etc61–63. Further, the abundance of certain bacteria was 
also found to correlate with the level of testosterone. 
The genus Prevotella, family Bifidobacteriaceae, showed 
a negative correlation, while phylum Proteobacteria, 
Enterobacteriaceae, and the genus Bacteroides 
showed a positive correlation with testosterone 
levels. Hyperandrogenism influences gut microbiota 
composition in PCOS33. Importantly, it was seen that 
deconjugation of DHT and T does not occur in the 
absence of gut microbiota, indicating that gut microbiota 
participates actively in androgen metabolism64. All, in all, 
these findings indicate that gut microbiota alterations can 
result in fluctuation of hormone levels in women with 
PCOS65.

7.  Association of Gut Microbiota 
with Insulin Resistance in 
PCOS

Hyperandrogenemia and hyperinsulinemia are the 
principal corner stones of PCOS pathophysiology. 
He et al., 2023, reported a decrease of Bacteroides, 
Bifidobacterium, and Lactobacilli, with an increase 
in Enterococci abundance and decrease in SCFA 
concentration in T2D66. SCFAs are known to indirectly 
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regulate glucose levels by regulating gluconeogenesis, 
increasing insulin secretion and controlling appetite67.

In a pilot study by Zeng et al., the gut microbiota 
showed notable difference between Insulin Resistant (IR) 
and non-IR women with PCOS. It was demonstrated that 
Firmicutes/Bacteroides ratio was significantly increased 
in non-IR PCOS, while IR-PCOS women showed a 
significant decrease42. Along similar lines, He and Li also 
observed that the gut microbial composition of IR-PCOS 
differs from that of non-IR- PCOS and healthy women. The 
gut microbiota of IR-PCOS women was enriched with a 
relative abundance of Rothia, Ruminococcus, Lachnospira, 
and Enterococcus, while non-IR PCOS was enriched with 
Lactobacillus and Akkermansia. Interestingly, both these 
studies reported significantly decreased abundance of 
Prevotellaceae and Prevotella, known producers of SCFA, 
in the IR-PCOS group compared to the healthy control50. 
Thus, the difference in gut microbiota between IR-PCOS 
and non-IR-PCOS should be considered while designing 
new therapeutic approaches. 

8.  Crosstalk between Gut 
Microbiota, Inflammation and 
Metabolism

The metabolites derived from gut microbiota are 
important for several host processes, and any alterations 
in microbiota composition change the levels of these 
metabolites. Indigestible carbohydrates are metabolized by 
a diverse group of bacteria in the gut microbiota to SCFA, 
mainly into acetate, propionate, and butyrate. The SCFAs 
serve as the energy source for intestinal epithelial cells and 
are important for mediating intestinal gluconeogenesis, 
and inhibiting the accumulation of triglycerides and 
lipolysis in adipose tissue. Obese PCOS women showed 
a lower abundance of several SCFA-producing bacteria, 
including Lachnospiraceae_UCG-010, Subdoligranulum, 
Anaerococcus spp., Odoribacter spp., Roseburia spp., 
and R. bromi compared to the healthy controls33,38. On 
administration of sodium acetate (a known salt component 
of SCFA) to PCOS-induced rat model, improvement in 
endocrine profile, ovarian histomorphology, glucose, and 
lipid profile was observed68, indicating a potential role of 
SCFA as a therapeutic treatment for PCOS.

Leaky gut refers to the entry of LPS through 
the intestinal barrier, causing endotoxemia and 
inflammation13. LPS binds to TLR4 receptors leading 

to secretion of various pro-inflammatory cytokines like 
TNF-α, IL-6, and INF-γ, which increases gut permeability 
by disrupting the tight junction proteins of the intestinal 
epithelium. SCFAs are also involved in the maintenance 
of gut permeability by induction of genes encoding tight-
junction proteins like zonulin and occludin69. The increase 
in gut permeability in PCOS women is evident with 
elevated concentrations of zonulin in serum34. Butyrate is 
an important SCFA involved in inhibiting translocation of 
LPS, thereby preventing immune cell activation leading to 
inflammation. This was supported by a study in a human 
ovarian granulosa tumour, called KGN cell line, which 
were stimulated with LPS to mimic the inflammatory 
condition in PCOS and were later treated with butyric 
acid. It was observed that butyric acid improved glucose 
metabolism, and mitochondrial membrane potential and 
inhibited inflammation through a complex mechanism70. 

This could indicate the role of gut microbiota metabolites 
in ovarian functions.

Branched-Chain Amino Acids (BCAA) are essential 
amino acids obtained through plant-based diet and 
synthesized by the gut microbiota71. Decreasing BCAA 
consumption was found to improve glucose and lipid 
homeostasis in obese rats72. Elevation in BCAA levels has 
been linked to increased insulin resistance in obese non-
PCOS women via altered levels of signalling of mTOR, 
JNK, and IRS173. Recent serum metabolomic studies have 
shown that women with PCOS had significantly higher 
BCAA levels than controls, which was further influenced 
by obesity74. Another study reported that BCAA levels 
are elevated in the serum of PCOS women and are 
found to be associated with insulin-resistance along with 
increased abundance of the species Prevotella copri and 
Bacteroides vulgatus. This indicates that gut microbiota 
could contribute to dysregulated amino acid metabolism 
in women with PCOS75.

Gut microbiota also plays an essential role in Bile Acid 
(BA) metabolism and in maintaining the diversity of the 
BA pool, which regulates lipogenesis, gluconeogenesis, 
and intestinal inflammation via BA receptors. Bile acids are 
conjugated in the liver, via N-acyl amidation with glycine 
or taurine; sulfation; ester glucuronidation; ethereal 
conjugation and N-acetylglucosamination to be then 
secreted in the intestine76. Conjugated primary bile acids 
(PBA) are first deconjugated and then acted upon by the 
intestinal flora to be converted into Secondary Bile Acids 
(SBA) like Lithocholic Acid (LCA) and Deoxycholic Acid 
(DCA). The deconjugation process for SBA production 
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provides energy in the form of glycine and taurine 
residues. This deconjugation is carried out by microbial 
enzymes Bile Salt Hydrolases (BSHs), widely encoded 
by several Gram-positive and negative bacteria across 
various phyla77. Women with PCOS have been reported 
to have an increased abundance of B. vulgatus, with low 
levels of bile acid, Glycodeoxycholic Acid (GDCA) and 
Tauroursodeoxycholic (TUDCA) acid levels43. These 
acids induce the lymphoid cells of the small intestine to 
secrete IL-22, which improves insulin sensitivity. IL-22 
is anti-inflammatory and functions to maintain the gut 
epithelial lining, along with inducing expression of genes 
involved in proliferation, wound healing and regulation 
of tight junction proteins78. Administration of IL-22 or 
GDCA acid to PCOS mouse model improves insulin 
resistance and estrous cyclicity.

Further, increased abundance of B. vulgatus modulates 
bile acid profiles and reduces IL-22 levels in the DHEA-
induced PCOS mouse model. It was also observed that 
administration of IL-22 on the DHEA-induced PCOS 
mouse model improved insulin sensitivity, estrous cycle, 
and abnormal ovary morphology43. Recently Gao et al. 
showed that administration of Troxerutin, a naturally 
occurring flavonoid, to DHT rats enhanced secondary 
bile acid profiles, which positively correlated with serum 
IL-22 level79. These results indicate a role of IL-22 as a 
therapeutic approach in the management of PCOS that 
could be explored.

Choline, mainly derived from food, is metabolized by 
gut microbiota to Trimethylamine (TMA) and converted 
to Trimethylamine-N-oxide (TMAO) in liver80. TMAO 
levels are reported to be associated with an abundance of 
Prevotella and Akkermansia mucinophilia. Dysregulation 
in the concentration of TMAO has been reported to have 
a potential role in the aetiology of various diseases like 
CVD, atherosclerosis, chronic kidney disease, metabolic 
syndrome and cancers81. In a PCOS rat model, treatment 
with TMAO inhibitor 3,3-dimethyl-1-butanol (DMB) 
alleviated metabolic symptoms by improving the PI3K/
Akt-related signalling pathway. This pathway is activated 
by the binding of insulin to its receptor leading to 
increased glucose uptake, thereby decreasing glucose 
level in serum82. Women with PCOS also showed elevated 
serum levels of TMAO and its precursor, which correlated 
with testosterone and could also contribute to elevated 
CVD risk in them45,81,83.

Overall, alterations in gut metabolite profiles could 
serve as important diagnostic markers and therapeutic 
targets for understanding PCOS pathophysiology and 
management.

9.  Association of Brain-Gut Axis 
with Gut Microbiota in PCOS

Gut bacteria and gut hormones are known to communicate 
with the brain via the gut-brain axis through the Enteric 
Nervous System (ENS), the Hypothalamic Pituitary 
Adrenal (HPA) axis and the Autonomic Nervous 
System (ANS)84. Glucagon-Like Peptide-1 (GLP-1) is an 
anorexigenic gut hormone whose secretion is stimulated 
by SCFA85. GLP-1 stimulates insulin release, in response 
to food intake and regulates gluconeogenesis. It inhibits 
adipose tissue macrophage infiltration and inflammation 
in an obese mouse model of diabetes86. Members of gut 
microbiota are reported to degrade GLP-1 and induce 
GLP-1 resistance, indicating the role of gut dysbiosis in 
influencing glucose homeostasis via GLP-187,88. GLP-1 
agonists are widely used in treating PCOS women for 
improving insulin sensitivity, weight loss, etc89,113,114. 
Peptide YY (PYY) is another anorexigenic hormone that 
promotes energy absorption in the intestinal tract and 
is influenced by SCFA produced by gut microbiota85. 
Reduced level of PYY is reported in women with PCOS 
along with a negative correlation with insulin resistance 
and BMI90.

The gut microbiota metabolites communicate with 
the brain via vagus nerve91. Gut microbiota is reported 
to produce neurotransmitters like GABA, dopamine, 
and serotonin92. GABA can stimulate the arcuate nucleus 
leading to increased LH secretion93. Liang et al. reported 
an increase abundance of GABA-producing bacteria 
Parabacteroides distasonis and a positive relationship 
between Bacteroides fragilis and Escherichia coli with 
serum LH levels and LH: FSH ratios in PCOS women49. 
This finding could support the previously reported 
discovery of high levels of GABA in the cerebrospinal 
fluid of women with PCOS by Kawwass et al94. Women 
with PCOS also showed a significant decrease in 
serotonin, which is involved in overall behavioral and 
neuropsychological processes, and this decrease in levels 
of serotonin may explain the increased odds of depression 
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and anxiety in these women leading to lower quality of 
life95.

The dysbiosis in gut microbiota leads to alteration 
in gut hormone secretion, which may impede the gut-
brain axis and could influence signs and symptoms of 
 PCOS96.

10.  Therapeutics
PCOS is a multifactorial disorder where both genetic and 
environmental factors play a role in its pathogenesis. With 
growing evidence linking gut microbiota dysbiosis with 
the etiology of PCOS, treatments focusing on shifting 
the gut microbiota dysbiosis towards eubiosis are being 
studied. The use of prebiotics, probiotics, synbiotics, and 
Fecal Microbiota Transplants (FMTs) in the management 
of PCOS is currently being widely studied.

10.1  Probiotics, Prebiotics and Synbiotics
The FAO/WHO defines (2002) probiotics as “live 
microorganisms which, when administered in 
adequate amounts, confer a health benefit on the host”. 
Bacterial genera commonly used as probiotics include 
Lactobacillus, Bacillus, Bifidobacterium, Streptococcus, 
and Enterococcus97. 

In a randomized, double-blind, placebo-controlled 
trial of 60 women with PCOS, including both phenotype 
A and D, the probiotic (Lactobacillus acidophilus, 
Lactobacillus casei and Bifidobacterium bifidum) receiving 
group (n = 30) showed significant weight reduction, BMI, 
FPG, serum insulin concentrations and triglycerides 
after 12 weeks of treatment in comparison to placebo 
group (n = 30)98. Similarly, Rashad et al. observed that 
probiotic supplementation showed favourable effects 
on hormonal and inflammatory profiles, particularly 

Reference Supplements 
evaluated Participants Conclusion 

Miao  et al., 
2021107

Probiotic and 
Synbiotic PCOS = 486

Significant reduction in HOMA-IR and serum insulin 
levels

Li et al.,
2021108

Probiotics, Prebiotics, 
and Synbiotics PCOS = 1049

Decreased HOMA-IR, FPG, FINS and increased 
QUICKI, decreased TG, TC, LDL-C, and VLDL-C

Pro-, pre-, and synbiotics consumption has a 
beneficial effect

Cozzolino 

et al., 2020109
Probiotic and 

Synbiotic
PCOS = 294;
Control = 293 Reduced testosterone FPG and systemic inflammation

Heshmati et al., 
2019110

Probiotics or 
Synbiotics 

supplementation

 PCOS = 236;
Control = 235

Improved QUICKI and decreased TG in the PCOS 
group receiving probiotics (or synbiotics) as compared 

to controls a

Shemasbi et al., 
2019110 Probiotics, Prebiotics, 

and Synbiotics
PCOS = 438;
Control = 417

Improved hormonal (FAI, SHBG) and inflammatory 
(NO, MDA) parameters

Liao et al., 
2018111 Probiotic PCOS = 406 Improved QUICKI, TG and VLDL-C

Daily probiotic consumption has beneficial effects

 a Not significant; FAI; Free Androgen Index; FINS: Fasting plasma insulin level; FPG: Fasting plasma glucose; HOMA IR: Homeostatic 
Model Assessment for Insulin Resistance; LDL- C: Low density lipoprotein cholesterol; MDA: malondialdehyde; NO: nitric oxide; 
QUICKI: Quantitative insulin sensitivity check index; SHBG: sex hormone binding globulin; TC: Total Cholesterol; TG: Triglyceride; 
and VLDL-C: very low-density lipoprotein cholesterol

Table 2. Meta-analysis studies to evaluate the effect of probiotics, prebiotics, and synbiotics in treating 
women with PCOS
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concerning macrophage migration inhibitory factor, in 
women with PCOS; however, they found no significant 
effects on fasting serum insulin and HbA1c99. In another 
randomized, double-blind, placebo-controlled trial 
study, probiotic supplementation resulted in significantly 
increased serum levels of Sex Hormone-Binding Globulin 
(SHBG), reduced total serum testosterone levels, reduced 
hirsutism, and improved chronic inflammatory states as 
indicated by decreased levels of serum high-sensitivity 
C-Reactive Protein (hs-CRP) and Malondialdehyde 
(MDA) concentrations in women with PCOS100. Another 
probiotic supplementation intervention for 12 weeks led to 
a decrease in weight, insulin resistance, triglycerides and 
VLDL-cholesterol concentrations in PCOS women98. An 
8-week trial with multispecies probiotics supplementation 
positively affected pancreatic β-cell function101. 
Lactobacillus supplementation along with Cyproterone 
acetate was found to reduce the inflammation through 
reduced IL-6, hs-CRP and increase in IL-10 along with 
weight loss in PCOS women102. Co-supplementation of 
Vitamin D and probiotics was associated with improved 
depression and anxiety scores in women with PCOS and 
reduced levels of testosterone and CRP and increased total 
antioxidant capacity103. Similar results were obtained with 
the administration of selenium and probiotic104. Intake 
of probiotic Bifidobacterium lactis V9 has been shown to 
increase SCFA levels in PCOS group105.

Similar results are also reported with the use 
of prebiotics, which are non-digestible saccharides 
that can only be digested by the gut flora. Prebiotic 
supplementation is reported to improve secretion of 
GLP-1, which in turn can reduce insulin resistance106. 
Intervention with isoflavone supplementation in PCOS 
women increases gut microbiota alpha diversity and 
improves fasting glucose and insulin sensitivity. Table 2 
summarises the meta-analyses performed to evaluate the 
effect of probiotics, prebiotics, and synbiotics in treating 
women with PCOS.

10.2  Fecal Microbiota Transplantation 
(FMT)

FMT is the process of transplanting a fecal sample from 
a healthy person into a recipient via a nasogastric tube 
or a nasointestinal tube to normalize the gut microbiota 
composition. The procedure is widely used to treat 
Clostridium difficile infections with an effectiveness of 

90%. European Consensus for FMT in clinical practices 
provides guidelines for safe and accurate FMT practices 
to promote pathogen-free transplantation of fecal matter 
from a donor to recipient112. Vrieze et al. showed FMT 
from lean donors to recipients with metabolic syndrome 
resulted in improved insulin sensitivity113. A systematic 
review with meta-analysis evaluated the role of FMT in 
the treatment of obesity and metabolic syndrome and 
found that the treatment is safe and may be encouraged as 
“adjuvant therapy”114. FMT may thus also aid in managing 
PCOS and its related traits by altering microbial profiles to 
better metabolic, inflammatory, and hormonal anomalies. 
Evidence suggestive of the use of FMT to manage 
PCOS mainly comes from the PCOS mouse model. 
Transplantation of fecal suspension from control rats into 
letrozole-induced PCOS rats showed improved oestrous 
cycles and a significant increase in estradiol and estrone 
levels compared with those in non-treated PCOS rats65. In 
another study, fecal microbiota from women with PCOS 
was transplanted into pseudo-sterile rats for a period 
of 21 days, which then displayed features of PCOS like 
increased cystic follicle numbers and elevated levels of T, 
LH and LH/FSH. Further, when letrozole-induced PCOS 
rats received fecal microbiota from a healthy donor, they 
showed improved estrous cycle, ovarian pathophysiology, 
and OMA IR index29. Although no human study has 
been reported so far for FMT in women with PCOS, 
the results observed in PCOS mouse models, and use of 
FMT in treatment of other disease conditions, advocates 
the usefulness of the treatment as a possible therapeutic 
approach for PCOS.

11. Conclusion
Gut microbiota dysbiosis is reported in a variety 
of disease conditions like T2D, obesity, and even 
neurological disorders like Alzheimer, and Parkinson’s 
Autism Spectrum Disorder. The decrease in diversity 
of microbes in PCOS is evident in different studies in 
human and animal models. Although many studies point 
out the abundance of certain bacterial phyla/genera in the 
diseased condition, an abundance of a single bacterium 
has not yet been clearly defined in the condition. The 
effect of dietary habits across the different populations 
may heavily impact the gut microbiota, and the complex 
nature of gut microbiota may contribute to variation in 
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the results of different studies where the heterogeneous 
nature of PCOS may further add to this burden.

Thus, it may be concluded that a panel of microbiota 
and their metabolites could be explored for their potential 
for developing a prognostic marker for PCOS and offer 
new therapeutic options in treatment. 
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