
Emphasizing the Role of Multi-omics Approach 
to Increase Survival Rate of Breast and Prostate 

Cancer Patients 
Khushali Upadhyay, Foram Patel, Yashshvini Patel, A. V. Ramachandran and Darshee Baxi*

Division of Biomedical and Life-Sciences, School of Science, Navrachana University, Vadodara - 391410,  
Gujarat, India; darsheeb@nuv.ac.in

Abstract
The understanding of cancer biology has greatly advanced since the advent of genomics. A remarkable heterogeneity at 
the whole-genome (or omics) level exists amongst even histologically comparable cancers, demonstrating the enormous 
complexity of the cancer genome. A powerful resource that has the potential to translate high-throughput omics to better 
and quick overall survival is the massive accrual and public accessibility of multi-omics databases with accompanying 
clinical annotation, including tumor histology, patient response, and outcome. In this new era of high-throughput omics, this 
paper emphasizes the distinct benefits of a multidimensional approach to genomic analysis. It discusses the implications 
of translational omics research for the cancer population. Single-level data analysis of high-throughput technologies 
has constraints because it only displays a small window of cellular processes. Understanding the links across several 
cellular organization levels made possible by data integration across various platforms, including genomes, epigenomics, 
transcriptomics, proteomics, and metabolomics, is important. This review examines a few popular frameworks for 
integrating multi-omics data. It provides a general overview of multi-omics applications in tumor classification, 
prognosis, diagnostics, and the function of data integration in searching for novel biomarkers and treatment options. 

1. � Introduction
The “Omics” technique is introduced as a promising 
biomarker sighting tool in the current biological period, 
focusing on many chemicals. The different tools that help 
to have a simple and systematic understanding of the 
extremely complex biological system include genomics 
(genome), proteomics (proteome), and metabolomics 
(metabolome). The “omics” approach for investigating 
complex biological systems differs greatly from the 
usual method. Theragnostic for precision medicine and 
advancements in cancer diagnostics would help with 
early detection, prognosis, and therapy of the disease and 
identify new molecular targets for drug development. 
Integration of regulatory layers may be beneficial for 
analyzing abnormal cellular processes that underline 

complex illnesses like cancer. A deeper knowledge of how 
genetic variations, environment, and interaction of the 
two affect complex biological systems is made possible 
by measuring biological samples on various omic scales. 
Using integrative models, multi-omics data analysis 
enhances the clustering of samples into physiologically 
significant groups, increases knowledge of prognostic 
and predictive phenotypes, analyses cellular responses to 
therapy, and supports translational research. This review 
highlights the benefits of such a comprehensive strategy 
while highlighting the innovative understanding that 
multi-omics has given to cancer modeling (Figure 1). 
The TWO common cancers diagnosed in females and 
males are Breast and Prostate cancer, respectively. An 
examination of cancer biomarkers, including somatic 
mutations, dysregulated expression, epigenetic control, 
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and genomic variants linked to significant tumors in the 
case of breast and prostate cancers, is attempted in this 
review.

2. � Breast Cancer and the Need 
for Omics

Regardless of identical histological markers at diagnosis, 
breast cancer is known for its diverse clinical behaviors 
and patient outcomes. Breast cancer cells with varying 
degrees of treatment, resistance, and metastatic potential 
result from the heterogeneity and dynamics of clonal 
evolution. The presence or lack of estrogen, progesterone 
receptors, and human epidermal growth factor receptor 
2 determines traditional therapy methods for specific 
individuals1. However, such clinical classifying techniques 
are useful for selecting targeted medicines and predicting 
short-term patient responses, but they cannot predict 
long-term survival. Cancer patients in rural locations 
are detected at late or advanced stages of the disease, 
with widespread metastases, indicating a need for more 
awareness, treatment, and early diagnosis. In recent 
years, India has been facing a difficult situation due to an 
increase of 13.5% in breast cancer incidence and a 10.6%  
increase in breast cancer mortality. In India, 162,468 
women were newly diagnosed with breast cancer in 2018 
alone. Breast cancer also accounted for 27.7% of all newly 
diagnosed malignancies in women. This indicates that, 

in India, one out of every four newly diagnosed cancers 
in women is breast cancer2. Breast cancer has risen to 
the top in all major urban registries due to increasing 
urbanization and westernization, as well as changing 
lifestyles and food habits. The lack of comprehensive 
breast cancer screening, disease detection at an advanced 
stage, and insufficient medical facilities are the leading 
causes of the reported increase in death rates. In India, 
one can see an increasing number of patients diagnosed 
with breast cancer in their early twenties. This is indeed 
an alarming situation in younger patients. There are a 
few comparable statistics for the survival rate of breast 
cancer in India. However, a rough estimate based on the 
Population-Based Cancer Registry (PBCR) and Hospital-
Based Cancer Registry (HBCR) reports suggests that the 
5-year survival rate for breast cancer patients in Indian 
women is less than 60%. Many cancer patients with HER2 
positive and ER/PR negative or HER2/ER/PR negative 
subtypes have poor prognoses. Breast cancer is relatively 
common in the younger age group (25 to 49 years), 
accounting for around 37.7% of all cases, which is quite 
significant. Breast cancer peaks in the 50-69 age group 
(which accounts for approximately 46.5% of all cases) and 
then begins to decline in the 70-plus age group. It may not 
be decreasing, but rather it impacts life expectancy3.

Breast cancer incidence and death metrics indicate 
an urgent need to develop robust knowledge-based 
prognostic systems capable of generating phenotypic 
estimates for an individual. To address this issue, 
personalized medicine seeks to provide the most effective 
treatment strategy based on the patient’s medical history, 
genomic characteristics, and therapeutic response4. 
Current breast cancer therapies may be most effective if the 
tumor size decreases rather than increases in the patient. 
The assessment of tumor size from radiological imaging, 
the response of a tumor even to effective medication, and 
the high possibility that the measurement of tumor size 
will not change considerably in the two weeks between 
hospital visits are all subject to considerable errors in 
diagnosis. Tumors, however, can develop resistance to 
treatments. Over time, the likelihood of a therapy being 
effective decreases. The effectiveness decreases when the 
patient receives that therapy or, to a lesser extent, another 
therapy from the same line with similar functional 
mechanisms. In this context, current systems biology 
based on “omics” techniques has the potential to play a 
significant role in resolving these issues. Indeed, in the 

Figure 1.  Multi-omics approach to increase cancer patient 
survival rate in breast and prostate cancer.
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age of precision medicine, “omics” methodologies and 
their application to the study of breast cancer could be 
viewed as a new biomarker discovery tool, resulting in 
novel biomarker molecules and molecular signatures 
with therapeutic use.

2.1 Genomics in Breast Cancer 
The genomics of breast cancer greatly benefits from next-
generation sequencing. Earlier, the breast cancer-causing 
genes BRACA 1 and BRACA 2 were identified. Many 
new oncogenes and tumor suppressor genes for breast 
cancer were discovered in the post-NGS era, and their 
interactions were also investigated. The genes are divided 
into several groups based on the alteration type (mutation/
polymorphism) or cancer susceptibility (high/moderate/
low penetrance). In the 1990s, researchers revealed that 
a woman’s family history is the most accurate indicator 
of her risk of having Breast Cancer (BC). After intense 
research, two genes were eventually found. The first, 
BRCA1, was discovered in 1994, and the second, BRCA2, 
was linked to BC in women in 19956,7. Notably, a meta-
analysis revealed that at age 70 the average cumulative BC 
risks for carriers of the BRCA1 mutation were 57% and 
49%, respectively8. Based on the multigene sequencing, 
additional genes were connected to the susceptibility 
of BC. BRCA1-Associated Ring Domain (BARD1), a 
direct companion of BRCA1, is anticipated to be a low-
moderate penetrance BC risk gene9. Loss-of-Function 
(LoF) mutation of BRAD1 gene was present in 0.51 
percent of BC patients.

Additionally, BARD1-mutated BC patients had 
a significantly lower mean age at first diagnosis than 
the entire study cohort (48.6 years, range 17-92 years) 
(42.3 years, range 24-60 years)10. Similar to BRCA1, 
germline LoF mutations in BRIP1 (BRCA1 interacting 
protein C-terminal helicase 1), a low penetrance gene 
that interacts with BRCA1, are associated with a higher 
risk of BC development, particularly in people who are 
diagnosed with the disease at a young age11. SMAD4 is 
another gene that is inactive in BC patients. The Bone 
Morphogenetic Protein (BMP)/Transforming Growth 
Factor (TGF) signaling pathway uses SMAD4 as a shared 
signal transducer and transcription corepressor for the 
human Estrogen Receptor (ER). An area of the genome 
frequently deleted in BCs is 18q21, where SMAD4 
is located12. The inactivation or inhibition of TGF-/
SMAD4 signaling has been discovered to be crucial for 

BC development13-15. The Fanconi anemia-DNA repair 
pathway is disrupted by PALB2 (also known as FANCN) 
germline LoF mutations, which increase the likelihood of 
developing BC16,17.

The pathogenic missense mutation L35Pa in PALB2 
also interferes with the PALB2-BRCA1 interaction, which 
may fail BC suppression18. The other two genes recently 
utilized in screening BC susceptibility are RAD51C 
and RAD51D19,20. According to estimates, carriers of 
the RAD51C pathogenic variation and the RAD51D 
pathogenic variant produced a cumulative risk of 20% and 
21%, respectively, of getting BC over the following 80 years. 
The BC risk for the RAD51C and RAD51D pathogenic 
mutations could range 44–46 % for carriers with two first-
degree relatives diagnosed with BC21. Two more notable 
genes that are altered in BC are NBN and CDK12. Cyclin-
Dependent Kinase  12 (CDK12) is a regulatory kinase 
with evolutionarily conserved functions in controlling 
transcription elongation. It is a low penetrance gene. In 
BCs, HER2 and CDK12 are typically co-amplified22. In 
21% of primary, unselected BCs, CDK12 expression was 
found23,24. The Wnt/-catenin signaling pathway regulating 
gene APC (Adenomatous Polyposis Coli gene) is involved 
in preserving low levels of catenin in the cell. APC gene 
SNP rs2229992 was shown to be associated with high risk 
of breast carcinogenesis in a community of BC in eastern 
India25.

2.2 � Proteomics Approach for Breast Cancer
Proteomics is a thorough, high-throughput study of 
proteins that looks into how they are categorized, how 
much they are expressed, what they are made of, and what 
they do. Several studies on protein quantification have 
been done thus far, using strategies based on antibodies 
whose availability, amount, affinities, and specificities are 
all closely related. Proteomic tests have quickly advanced 
from total protein counts acknowledged and lists of 
proteins and peptides described in test samples. Breast 
cancer protein biomarkers may be produced by immune 
cells invading the tumor or stroma, tumor cells, or stromal 
cells. Due to variable degrees of incongruence between 
RNA and protein expression, functional biological 
characteristics are not fully captured in intrinsic gene 
expression profiles. The study of the “secretome” and 
cell markers has received considerable attention in 
recent years. The vast and intricate array of chemicals 
and proteins secreted by living cells and discharged 
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from their surfaces is called the “secretome.” Since 
secretome proteins play a crucial role in cell signaling, 
communication, and migration, the study of tumor cell 
secretomes has come under increased scrutiny to identify 
and characterize diagnostic and prognostic markers and 
potential pharmacological and therapeutic targets26. In 
addition, many researchers have switched their attention 
from studying BC cell lines to Cancer Stem Cells (CSCs) 
in recent years. Nearly 65% of cases of cancer recurrence 
are known to involve CSCs in a major way27,28. Unlike 
cancer cells, CSCs are latent, making them immune to 
anti-cancer medications.

Additionally, after receiving anti-cancer medication, 
these cells are induced to proliferate quickly. Breast cancer 
patients who have Cathepsin D, a lysosomal protease gene 
(CTSD) expression upregulated, have a bad prognosis; 
moreover, the role of CTSD is completely unrevealed 
to date29. Patients inflicted with breast cancer with 
expression of greater levels of FABP7 (Fatty Acid Binding 
Protein  7) had worse survival rates and more instances of 
brain metastases as it plays a crucial role in proliferation 
and cell migration30.

2.3 Metabolomics for Breast Cancer
One of the newest members of the omics family, 
metabolomics, has advanced significantly over the 
past ten years, largely due to developments in mass 
spectrometry technology. Because metabolites serve as 
the link between genotype and phenotype, investigating 
the metabolome offers a considerable advantage by 
revealing the endpoints of biological events, as is now 
generally acknowledged. Metabolomics, in addition to 
genomes and proteomics, can show endpoint biomarkers 
for diagnosis or therapeutic response evaluation. Blood 
contains clinical biomarkers that are much easier to 
spot. Therefore, it is crucial to determine if the metabolic 
reaction seen in the blood is actually derived from 
tumor tissue or reflects a more general response of the 
body to the existence of a tumor31,32. Numerous studies 
have discovered indicators for the metabolism of fatty 
acids, amino acids, and glycolysis. Phe, Gluc, Pro, Lys, 
and N-acetyl-Cys levels were high in metastatic patients, 
in contrast to the low lipid levels in those patients. The 
by-products of -oxidation (Acac and 3-HB) and lipid 
breakdown (Gluc), as well as N-acetyl glycoproteins 
(NAC 1 and 2), Pyr, Glut, and mannose, have been 
detected in the blood of early and advanced BC patients. 

Lipids, 3-HB, Lact, His, Pro, and Phe are frequent marker 
metabolites33. As a result, several important routes for the 
early detection of BC have been identified, including the 
metabolism of taurine, hypotaurine, alanine, aspartate, 
and glutamate34,35. A dried blood spot method by Wang 
et al. showed better diagnostic sensitivity towards BC36. 
Another biological fluid that has been studied is saliva, 
and metabolites found in it, include 3- and 4-methyl-
pentanoic acids, phenol, p-tert-butyl-phenol, acetic, 
propanoic, and benzoic acids, as well as 1,2-decane diol, 
2-decanone, and decanal37. Due to their formation and 
accumulation, polyamines, particularly N-acetylated 
versions, are a different chemical class connected to 
tumor growth38.

3. Prostate Cancer
Prostate cancer is the second most frequently diagnosed 
disease and the sixth most common cause of cancer 
mortality in males globally. In 2020, it was predicted that 
there would have been 1,414,259 new cases of prostate 
cancer and 375,304 deaths related to it39. Androgen 
Deprivation Therapy (ADT) and AR pharmaco-
antagonists (androgen insensitivity syndrome) are 
two common treatments for PCa sensitive to aberrant 
alterations in AR. Point mutations and deletions are 
examples of changes in the AR genes. This insensitivity 
is caused by mutations in the AR receptor’s second zinc-
finger ligand-binding domain40. 

3.1 � Genomics and Proteomics for Prostate 
Cancer

PTEN mutations and PCa aggressiveness are positively 
correlated, according to subsequent investigations. 
Recent research has demonstrated a beneficial correlation 
between PTEN loss and the de novo lipogenesis enzyme, 
Fatty Acid Synthetase (FASN) gene knockdown41. The 
amount of stromal micro-invasion decreased due to the 
downregulation of both genes. SREBP, a transcription 
factor that controls de novo lipogenesis and adipogenesis, 
was activated when PTEN was co-deleted with other genes, 
such as PML142. Glycolysis and PCa cell glucose uptake 
are inhibited due to p53’s suppression of the expression 
of glucose transporters. Through activating glutaminase 
2 (GLS2) and regulating glutamine absorption, p53 
expression supports OXPHOS. A study connecting p53 
mutations in PCa cell lines with PCa primary human 
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metabolites in 10 out of 40 samples established p53 as a 
PCa tumor suppressor for the first time.

The functional impact of p53 mutation, specifically 
deletion, on PCa progression was confirmed by subsequent 
p53 studies43. According to a recent study, the dietary 
component Phenethyl Isothiocyanate (PEITC) reduces 
PCa cell development by triggering apoptosis by saving 
mutant p53 in the VCaP and LAPC-4. Increased Serine 
One-Carbon Glycine synthesis (SOG), which is in charge 
of DNA methylation, is also connected to p53 loss44. It has 
been shown that c-MYC affects the expression of several 
enzymes involved in the glycolytic pathways, including 
HK2, PFK1, ENO1, LDHA, and GLUT1. Additionally, 
c-MYC controls GLS1 and the transporters it coordinates, 
promoting glutamine metabolism. The PI3K/AKT axis is 
activated by amplifying c-MYC. The relationship between 
c-MYC amplification and PI3K-associated dysregulation, 
including PTEN and all AKT homologs, has been 
shown in localized and metastatic PCa45. In all PCa cell 
types, c-MYC and AKT1 activities promote increased 
metabolites linked to lipogenic and glycolytic processes. 
According to a recent study, there is a favorable correlation 
between c-MYC expression and AR activity. However, 
due to both proteins sharing identical enhancer binding 
sites in a different study, overexpression of c-MYC had a 
negative impact on AR activity and transcription in PCa 
cell lines. In advanced PCa, c-MYC exhibited an inverse 
correlation with the AR target genes KLK3 (PSA) and 
GNMT46.

3.2 � Metabolomics for Prostate Cancer
Metabolomics is a new and promising approach for PCa 
biomarker research that has just emerged. Numerous 
multivariate biomarker sets have been investigated 
for various use cases. Production of citrate, PSA, and 
polyamines like spermine, the main constituents of 
prostatic fluid, is one of the primary tasks of prostate 
cells. Therefore, prostate cells have a unique metabolic 
profile because they produce these and other chemicals. 
Compared to other organs, prostate cells produce a large 
amount of citrate. Citrate oxidation is one of the most 
prominent changes because cancer cells cannot collect 
zinc. Since zinc levels are low in cancer cells, m-aconitase 
is no longer blocked and can catalyze citrate oxidation. 
More effective energy production arises from converting 
citrate build-up in healthy prostate cells to oxidized citrate 
in malignant prostate cells. This likely occurs before the 

histological detection of malignant cells and is an early 
stage in the development of malignancy47.

In a recent study, it has been shown that Androgen 
Receptor (AR) signaling brings about increased levels of 
Glucose-6-Phosphate Dehydrogenase (G6PD), NADPH, 
and ribose synthesis in hormone-sensitive PCa cells 
and Castrate-Resistant PCa (CRPC) cells. G6PD is a 
key enzyme for the pentose phosphate pathway47. The 
overexpression of G6PD is stopped by rapamycin, which 
inhibits the mammalian target of rapamycin. As a result, 
these investigations demonstrated a connection between 
the mammalian target of rapamycin and the activation of 
G6PD via AR. These findings suggested that the pentose 
phosphate pathway is crucial for growth48.

Increased lipid production is necessary for cell 
division and intercellular communication. Because it is a 
precursor for lipogenesis and cholesterogenesis and can be 
formed by the cytosolic transformation of citrate, acetyl-
CoA also plays a significant role in this metabolic change. 
Sterol regulatory element-binding protein-1 boosted 
lipogenesis, NADPH oxidase expression, reactive oxygen 
species generation, and PCa cell proliferation, migration, 
and invasion. Choline and creatine levels are elevated in 
PCa cells due to increased membrane production for cell 
proliferation49.

The interactions between the tumor and the stroma are 
significant in PCa progression. The reverse Warburg effect 
depends on the Myo-fibroblastic microenvironment, 
created when cancer cells interact with “cancer-associated 
fibroblasts.” The Warburg effect, generated by epithelial 
cancer cells, causes cancer-associated fibroblasts in the 
Myo-fibroblastic microenvironment to release lactate and 
pyruvate. The PCa cells absorb the lactate and pyruvate 
and utilize them for the Krebs cycle, anabolic metabolism, 
and cell growth50.

Sarcosine (N-methylglycine), one of the most critical 
metabolomics investigations, was found to be a potential 
PCa biomarker in urine51. Sarcosine was found to be 
considerably raised during PCa progression to metastasis 
and was either undetectable or present in insignificant 
amounts in the urine of healthy individuals. Sarcosine is 
an intermediary product in the synthesis and breakdown 
of glycine52,53.

In addition to changes in sarcosine levels, 
metabolomics analyses of serum and plasma from PCa 
patients also showed changes in fatty acids, amino acids, 
lyso-phospholipids, bile acids, and metabolites connected 
to the route for the manufacture of steroid hormones. 
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Variations in lipid -oxidation, which are required to 
produce the energy for aberrant cell proliferation, are 
connected to changes in fatty acid composition. Increased 
glucose levels in serum samples at the time of PCa 
diagnosis were linked to an increased risk of recurrences 
following treatment with radical prostatectomy or 
radiation therapy. Alterations in energy metabolism are 
also common54,55.

To find changes in cancer cell metabolism and non-
invasive biomarkers for PCa detection, PCa metabolomics 
investigations may also be conducted on seminal and 
prostatic fluids. When comparing PCa groups to controls, 
prostatic and seminal fluid analyses using different 
analytical methods (fluorescence technique and NMR) 
found decreased levels of zinc and citrate. The citrate-level 
testing is more effective at detecting PCa than Prostate 
Specific Antigen (PSA) tests56. Additionally, the efficacy 
of citrate analysis in semen is equivalent to that of citrate 
analysis in prostatic secretion for detecting PCa57,58.

Studies on metabolomics in cell lines can also be utilized 
to assess the changes brought on by pharmacological 
treatment. Changes in choline and energy metabolism 
seem to result from PCa cell therapy59. Due to the 
increased pyruvate uptake into mitochondria, pyruvate 
dehydrogenase kinase is inhibited by Dichloroacetate 
(DCA), which has the potential to reverse the Warburg 
effect. In contrast to poorly metastatic cells, which 

showed no changes in lactate/metabolite ratios following 
treatment, highly metastatic cells displayed significantly 
reduced levels of lactate/metabolite ratios [Lac/Cr, Lac/
Cho, Lac/Al, and Lac/(Cho + Cr + Al)]. These results 
imply that cells with high levels of metastatic behavior are 
more dependent on lactate generation60.

4. Concluding Remarks
A systemic approach, integrating multi-omics studies, is 
essential to understand cancer biology and investigate 
its molecular pathogenesis. Through multi-omics data 
analysis, some common molecular characteristics can 
be identified across multiple tumor types. This allows us 
to differentiate between patient subgroups and identify 
cancer subtypes based on their molecular characteristics. 
With multi-omics, we can systematically summarize 
biological interactions from an individual cell or tissue to 
a patient with a primary tumor and possible metastases, 
embracing different layers of quantitative information, 
which help clinicians, pharmaceutical companies, and 
researchers in the direction of future precision medicine 
(Figure 2). Moreover, such integration enables the 
identification of the molecular characteristics of tumors 
at various levels, from genes to proteins, as well as the 
different stages of cancer.

Figure 2.  Schematic of possible approach explaining diagram to predict future precision 
medicine.
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