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Abstract
Pinealocytes of the pineal gland in vertebrates mainly synthesize melatonin (5-methoxy-N-acetyl-tryptamine). Moreover, 
melatonin is synthesized in several extra-pineal cells, including the photoreceptor cells of the retina, the cells of the gut, 
and the hepatocytes of the liver in different vertebrates, including fish species. One of the remarkable features of pineal and 
retinal melatonin is that it is produced rhythmically in synchronization with the environmental Light-Dark (LD) cycle, with a 
daily nighttime peak. However, the melatonin synthesis in tissue/cells from the extra-pineal and extra-retinal origin(s) may 
not always undergo photoperiod-regulated daily variations but is also dependent on the environmental food entrainment 
factors (in the gut), acting as the most reliable synchronizer(s) in its daily rhythm features. Moreover, the regulation of 
the liver and ovary (important for fish reproduction) is unclear. In this review, we attempt a comparative account of the 
nature and regulation of endogenous melatonin synthesis between a source like the pineal gland and many other non-
pineal origins, which have gained serious attention in the last ten years. We also review the functions of melatonin in 
regulating fish ovarian growth and maturation. The physiological melatonin levels, manipulated either endogenously (by 
photoperiodic modulations) or exogenously (by injections or by feeds), have tremendous effects on reproductive events 
in fish at the age of its first maturity, as revealed in recent findings. Characterization and identification of the importance 
of pineal gland melatonin in the growth of the oocytes via the hypothalamic-pituitary-gonadal axis have been explored 
several years back. The identification of melatonin receptors about fourteen years back on the wall of developing oocyte 
spurt the breakthrough, which introduced the concept of direct control of melatonin on developing oocytes. Thus, this 
review gains uniqueness by addressing the latest developments recorded in the field of melatonin and fish reproduction, 
particularly in improving oocyte maturation. Nonetheless, an attempt has been made to underline approaches that need to 
be developed to apply the molecule in large-scale aquaculture. 

1.  Introduction
Melatonin (5-methoxy-N-acetyl-tryptamine) of teleost, 
principally synthesized from the pineal organ, is known to 
play a critical role in the direct perception of light from the 
environment concomitant with diurnal as well as seasonal 
photoperiodic changes in the regulation of diverse 
physiological functions1,2 including reproduction3,4. 
The chronobiological rhythm of this wonder molecule 
is conveyed by converting the changing environmental 

signals, which are ultimately transcribed into an endocrine 
signal5 that informs the body’s internal physiology about 
the time and the month of the calendar year of a season. In 
recent times, researchers found a strong link between the 
role of melatonin in reproduction6,7 not only in different 
mammals but also in lower groups of vertebrates such 
as fish3,4. The varying length of the nighttime melatonin 
transmits the signal by coordinating three different sites 
of action: (i) hypothalamus, (ii) pituitary, and (iii) gonads8  
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via the Hypothalamic-Pituitary-Gonadal (HPG) axis 
about the time of an annual cycle9, and the testicular and 
ovarian development is regulated based on this changing 
melatonin secretion by the pineal organ in fish. 

1.1  Pathway of Melatonin Biosynthesis
Melatonin is synthesized in four sequential steps from 
L-tryptophan (one of the crucial amino acids) within the 
melatonin-synthesizing tissue (Figure 1). L-tryptophan 
is first transformed to 5-Hydroxy-Tryptophan (5-HTP) 
by Trp-5-Mono-Hydroxylase (TPH)10 within the 
mitochondria. In the second step, the 5-Hydroxy-
Tryptamine (5-HT/serotonin) is synthesized from 
5-HTP following decarboxylation by aromatic amino 
acid decarboxylase, which occurs in the cytosol11. In the 

third step, 5-HT is acetylated into N-acetyl serotonin 
by the rate-limiting enzyme Arylalkylamine-N-
Acetyltransferase (AANAT)12. In the fourth or final step, 
N-acetylserotonin is O-methylated by N-Acetylserotonin 
O-Methyltransferase (ASMT), previously known as 
Hydroxyindole-O-Methyltransferase (HIOMT), to 
produce melatonin13. Notably, three TPH (TPH1a, TPH1b, 
and TPH2)14, two AANAT [AANAT1 (AANAT1a and/or 
AANAT1b) and AANAT2]15, and two ASMT16  isoforms 
have been identified in the teleost, which plays an essential 
regulatory function in the synthesis of melatonin. Two 
TPH isoforms are known to exist in most mammals17,18 ;  
TPH1 is only found in the pineal organ and peripheral 
tissues, whereas TPH2 is localized in the brainstem raphe 
nuclei19. Furthermore, tissue-specific expression of TPH 
has been reported in zebrafish wherein TPH1 (a and b) is 

Figure 1. Diagrammatic representation of melatonin biosynthetic pathway within (A) the end vesicle of pineal organ, 
(B) retina, (C) liver, (D) gut, and (E) ovary in fish. Melatonin synthesis in the pineal organ, retina, and liver is under 
the control of environmental Light-Dark (LD) conditions such as natural (NP; LD 12:12 h) or long (LP; LD 16:08 h), 
or short (SP; LD 08:16 h) photoperiods or constant-light (LL; LD 24:00 h) or constant-dark (DD; LD 00:24 h), while 
in the gut tissues melatonin synthesis is influenced by rhythmic environmental/external features like food entrainment 
factors, viz., availability of food, timing of food supply, number of feeds per day, quality of food, etc. In the inset, rhythm 
characteristics of (F) diurnal and (G) seasonal profiles in LD-entrained melatonin-producing tissue (pineal, retinal, and 
liver) are shown on the left. On the right, the (H) diurnal and (I) seasonal rhythm of the gut (red dotted line) and ovarian 
melatonin (green solid line) are shown. As per the summary of information gathered, pineal, retinal, liver, and ovary 
melatonin exhibit an influential role in ovarian functions, while, to date, no such data are available on the impact of gut 
melatonin on fish reproduction. Prep. = preparatory; Pres. = pre-spawning; Sp. = spawning; Ps. = post-spawning.
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primarily involved in photoreception, phototransduction, 
and melatonin production20. The unique feature of teleost 
AANAT among vertebrates is having two subfamilies21,22. 
In addition, an earlier study15 found that AANAT1 is 
primarily responsible for mediating the metabolism of 
serotonin and dopamine, as well as melatonin production 
in the retina, whereas AANAT2 is more specific for the 
production of melatonin in the fish pineal. Further, 
two ASMT subfamilies have evolved due to whole-
genome duplication close to the origin of teleosts23,24 and 
subsequent mutations in the duplicated genes. It has been 
noted that the higher expression of the AANAT gene 
in a melatonin synthesizing tissue is usually associated 
with higher expression of the ASMT gene and ultimately 
to the elevation of the final product melatonin25. In 
contrast, according to a recent report26, the activity of the 
ASMT, the final enzyme for synthesizing melatonin from 
N-acetylserotonin, also seems to be a vital step during the 
biosynthesis of melatonin. 

1.2  Pineal and Extra-Pineal Sources of 
Melatonin

The pineal gland is located at the roof of the diencephalon 
or third ventricle of the brain, which performs the 
function of an endocrine gland in a higher group 
of vertebrates and secrete LD-regulated melatonin. 
But in this case, the pineal gland does not retain any 
photoreceptive property; instead, the retina perceives the 
photic information. However, the mechanism of photo-
perception is different in vertebrates like fish, amphibians, 
and reptiles. Here, the pineal is a photoreceptive structure 
in addition to endocrine function (glandular functions) 
and is named the ‘pineal organ’27. A complex of three 
distinct structures represents the pineal organ in teleost 
fish: an anterolaterally extended, dorso-ventrally 
compressed vesicular body - the end vesicle situated 
close to the cranium, linked to the brain by a very long 
pineal stalk, which at the cerebral end is encircled by 
highly folded plexiform saccular - dorsal sac28. However, 
an immunocytochemical study confirmed the presence 
of melatonin-secretory pinealocytes only in the end 
vesicle portion of the pineal complex of fish29. Therefore, 
melatonin biosynthesis was investigated in several studies 
using the end vesicle as the primary target30,31. 

Subsequent studies over the last fifty years detected 
melatonin in various extra-pineal tissues and cells 

in animals, including the photoreceptor cells of the 
retina3,32, the acinar cells of the Harderian gland33, the 
enterochromaffin cells of the gut34 and the hepatic cells 
of the liver35. Studies have shown the presence of all the 
vital photoperiodic-driven melatonin biosynthesizing 
enzyme genes (TPH1, AANAT1, AANAT2, and ASMT) 
in the retina in addition to the pineal gland in the tropical 
carp30,31. Though day-night variations were noted in both 
tissues, the pineal and retina may show different patterns 
of biosynthesizing gene expression in the seasonal cycle31. 
It was also pointed out that the rhythm parameters of 
various melatonin biosynthesizing enzyme genes in these 
two organs vary and/or shift differently. Additionally, 
under the influence of different photoperiodic conditions, 
the pattern of mRNA expression of the melatonin 
biosynthesizing enzyme genes in the retina and pineal 
organ changes36. This investigation reveals a distinctive 
way of mRNA transcripts for the genes TPH1, AANAT1, 
AANAT2, and ASMT in the retinal and pineal organ; the 
pineal melatonin biosynthesizing enzyme genes exhibited 
a pattern similar to that of serum levels of melatonin, 
and the retinal genes underwent a dramatic change with 
photoperiod. 

Recent reports have confirmed the existence of 
melatonin in the follicular cells of the ovary; however, the 
synthesis of this molecule within the ovary has not been 
evident, as the existence of AANAT, the critical enzyme 
for melatonin biosynthesis, has not been noted in the 
ovarian tissue37. In contrast, another study demonstrates 
the mRNA of all the melatonin biosynthesizing enzyme 
genes in the zebrafish ovary (Danio rerio) under varied 
photoperiodic conditions. Moreover, this study also 
confirmed the capability of the zebrafish ovary in the 
biosynthesis of melatonin by estimating AANAT2 under 
both in vivo and in vitro states with a significant daily 
variation by qRT-PCR analysis in the ovary38. 

Surprisingly, the regulation of melatonin synthesis 
in extra-pineal tissues, such as the gut, differs from the 
pineal organ39. The high expression levels of melatonin-
synthesizing enzymes have indicated endogenous 
synthesis of melatonin in the gut40,41. The study in goldfish 
showed mRNA expression of gAANAT2 in both the 
anterior gut and hindgut16, which is further supported by 
a study42 that found a rhythmic AANAT activity in the 
anterior gut of the same fish. Munoz-Perez et al.,43 have 
shown a significant alteration in melatonin levels and the 
mRNA expression of AANAT1, AANAT2, and ASMT 
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in the mucosa and the gut wall of trout. A recent study25 
also demonstrated that the AANAT2 and ASMT genes 
are vividly expressed in the digestive tract. The greater 
expression of the AANAT2 gene, rather than AANAT1, 
indicates the significance of the AANAT2 isoform in 
melatonin production in carp. Moreover, melatonin 
biosynthesizing enzyme genes in the zebrafish digestive 
tract and their daily mRNA expression profile have been 
investigated under different feeding conditions involving 
regular photoperiods44. This study demonstrated that an 
alteration in the feeding cycle could alter the melatonin 
synthesizing system because the acrophase of the TPH1, 
AANAT2, and ASMT transcripts in the altered feeding 
was the reverse of that in the regular feeding. Moreover, 
the fish gut has shown higher melatonin synthesis in 
association with AANAT protein expression, the rate-
limiting enzyme of the melatonin biosynthetic pathway1, 
concomitant with the feeding-fasting cycle45, indicating 
endogenous synthesis of melatonin by gut tissue. Similar 
expression of the AANAT protein and the hormone 
melatonin was also detected in the hepatic tissues, and 
it was discussed in favour of local synthesis of hepatic 
melatonin46. Further, hepatic melatonin exhibited 
an altered circadian rhythm, and, unlike pineal or 
serum melatonin, the peak of hepatic melatonin titer 
was recorded at the early dark phase during the four 
reproductive stages of a yearly cycle. The hepatic 
melatonin exhibited the highest value in the post-
spawning phase and the lowest in the spawning phase47 
(Figure 1). 

1.3  External Regulators of Melatonin 
Rhythm in the Pineal Organ and the 
Extra-Pineal Origins

One of the remarkable features of melatonin, measured 
in the tissue extracts of the pineal gland/organ in all 
the animals studied, including fish, is that it undergoes 
rhythmic variations in a daily cycle in synchronization 
with the environmental LD cycle with a peak at 
midnight21,48 (Figure 1). This pattern of rhythmicity 
is partially due to a dark-dependent rise in the activity 
of Arylalkylamine-N-Acetyltransferase (AANAT), 
which catalyzes the transformation of serotonin to 
N-acetylserotonin1. Notably, three variants of night-time 
melatonin rhythm (namely type - A, -B, and -C) have been 
identified21 in different vertebrate groups, including fish. 

The A-type profiles are characterized by a discrete peak 
in the late dark phase, e.g., Atlantic cod (Gadus morhua) 
and Haddock (Melanogrammus aeglefinus). In contrast, 
B-type rhythms are described by a distinct peak in the 
mid-dark phase, e.g., Nile tilapia (Oreochromis niloticus 
niloticus), and C-type rhythms exhibit a rapid increase in 
melatonin nearly after the start of darkness, e.g., rainbow 
trout (Oncorhynchus mykiss), Atlantic salmon (Salmo 
salar), Atlantic halibut (Hippoglossus hippoglossus) and 
most teleosts21. However, the investigation on carp (Catla 
catla) discovered for the first time that the nature of the 
nighttime peak of pineal49 and serum melatonin29 in 
the same species might change from A-type (during the 
preparatory phase) to B-type (during the remaining parts 
of a reproductive cycle) in different stages of an annual 
process. This indicates the diverse nature of melatonin 
sensitivity in gonads subjected to the reproductive status 
of the fish.

Melatonin immuno-reactive cells have been confined 
in the Outer Nuclear Layer (ONL), Outer Plexiform 
Layer (OPL), and Inner Nuclear Layer (INL) of the retina. 
Two cell types are involved in melatonin biosynthesis; 
Müller and photoreceptor cells. Immuno-fluorescence 
study indicates that perikarya of the ONL, the synaptic 
processes of photoreceptor cells of the OPL, contain high 
intensities of melatonin50. In most of the animals studied, 
the striking feature of retinal melatonin, like pineal, is 
that it is synthesized rhythmically with a sharp day-night 
variation in synchronization with the external LD cycle2. 
The melatonin level in the retina is high during scotophase 
and low during photophase3,50. It is argued that melatonin, 
which originates from the retina, might function as a 
modulator of neurotransmission and neuronal excitability 
of this tissue51. Retinal melatonin may have autocrine, 
paracrine, or neuroendocrine actions52.

In contrast to the melatonin profiles noted in the 
pineal organ and retina, melatonin synthesis and secretion 
by an extra-pineal and extra-retinal source like the gut 
do not come under environmental photic control53–55. 
Remarkably, in fish, the chronological features of the gut 
melatonin were found to fluctuate with the environmental 
food entrainment factors such as availability of food, the 
timing of food supply, number(s) of feed per day45, quality 
of food56,57, which act as the most reliable synchronizer(s) 
in daily rhythm features of gut melatonin58 (Figure 1). The 
melatonin levels in the gut showed a different rhythmic 
pattern on the availability of foods, quality of food, and 
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most notably on, the feeding time. When fish was fed 
daily at different time points, an intense impact of feeding 
time on the gut melatonin was found.

Irrespective of environmental light and temperature 
variations experienced by carp in their natural habitat, 
ovarian melatonin content did not show significant day-
night variations. On the contrary, ovarian melatonin 
concentration showed substantial annual fluctuations, 
with a peak during spawning and a lowest during post-
spawning37. The ovarian melatonin concentration during 
spawning was approximately five times greater than 
noted during the post-spawning phase promoting the 
knowledge of a probable role of the endocrine signal in 
the ovary. On the other hand, a recent study46 on carp 
(Catla catla) reported the rhythm features of melatonin 
in both the serum and liver under natural photo-
thermal conditions. The day-night melatonin levels 
in the hepatic tissue portrayed an indistinguishable 
pattern of differences, irrespective of reproductive 
seasons, with a peak at the onset of night and a lowest 
at midday. The expression of AANAT protein, like 
melatonin titers, in the liver showed maximum levels in 
the post-spawning phase and minimum in the spawning  
season. 

2.  Environmental Regulation of 
Oocyte Growth and Maturation

The growth and development of the ovary in most 
teleost are discontinuous and marked by some specific 
characteristics in seasonally breeding fish. Breeding in 
fish shows its peak activity in a short period, headed by 
an extended and complex preparation procedure. The 
breeding time of each species is so precisely scheduled that 
offspring is created in optimum environmental conditions 
to ensure maximum survival. Generally, temperate zone 
fish spawn during spring and early summer, while others 
spawn during autumn. Freshwater fish from the Murray-
Darling River System of New South Wales, Australia, 
spawn when flooded waters come into contact with 
dry soil59. Similarly, the fish in the central Amazonian 
floodplain lakes used to spawn during the rainy season60. 
In the Indian subcontinent, most freshwater teleosts 
breed during the monsoon when rainfall is the heaviest.

In the subtropical and tropical regions, the peak 
spawning period of the fish is associated with monsoon61, 

which is related to the synchronization of spawning. It has 
been suggested to play an influential role in stimulating 
the release of gonadotropins (FSH, LH), which finally 
leads to spermiation or ovulation62. However, the 
prime candidates among all different environmental 
components that are responsible for the complicated 
preparation (development) of the ovary (or rather gonad) 
for the rhythmic activity of reproductive events in fish are 
light and temperature. Synchronization of physiological 
and environmental events is one of the most potent roles 
of the fish neuroendocrine system, comprising sensors 
and circadian oscillators like the pineal organ, the lateral 
eyes, and the hypothalamic suprachiasmatic nuclei. 
This circadian oscillator system in teleost is located in 
the pineal organ and the eyes, among which the pineal 
organ is considered the most critical component of the 
endocrine system, which conveys the message of changing 
photic environment and has a conserved role in the 
cyclical synthesis and release of melatonin to influence 
the seasonality of ovarian activities63.

2.1  Seasonal Ovarian Cycle in the 
Subtropical Teleosts

Catfish of subtropical regions are seasonal breeders 
and display an annual gonadal cycle in which two 
consecutive physiological events occur. The first set of 
events leads to gradual enlargement of the ovary with 
concomitant vitellogenesis before spawning64. The second 
set of events involves ovulation and spawning during the 
monsoon season (July to August), the prime time for 
breeding. A similar trend is noticed in carp, though the 
breeding periodicity of carp varies with the geographical 
distribution of species. In Israel, the carp typically breed 
in April and May65. In France, the common carp spawns 
in the summer66. Indian major carp Catla catla, which 
represents the only non-air-breathing fish in India that 
has been considered for extensive experimental studies 
to understand the mechanism of environmental and 
endocrine control of seasonal reproduction, is known to 
breed during the monsoon67,68. Based on the investigation 
made on the ovary, the seasonal breeding cycle of these 
subtropical fish has been categorized into four phases: 
(a) preparatory (January–March), (b) pre-spawning 
(April–June), (c) spawning (July–August), and (d) 
post-spawning (September-December) phase, each of 
which displays some definite standard features. In the 
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first event, during the preparatory and pre-spawning 
phases, the ovary undergoes enlargement by forming 
yolky oocytes through the process of vitellogenesis. In 
the second event, maturation, ovulation, and finally, 
the release of oocytes occurs through spawning. After 
spawning, the ovary remains in the gametogenically 
inactive stage with abundant degenerated/atretic 
follicles (non-spawned eggs) and postovulatory 
follicles. The steroidogenic cascades and vitellogenesis 
cannot be triggered during this phase. This phase is the 
previtellogenic or post-spawning phase (September- 
December)29,68.

2.1.1  Vitellogenic Phase or Growth Phase and 
Post-Vitellogenic Phase or Maturation Phase 
of Oocyte

During vitellogenesis, the yolk precursor protein 
vitellogenin is synthesized in the liver under stimulation 
of 17β-estradiol (E2) and transported to the ovary via 
circulation, where the growing oocytes (Stage I) take it 
up. E2 is synthesized and secreted from the granulosa cells 
of the ovarian follicles and acts on the liver during the 
process of vitellogenesis69 (Figure 2). Before ovulation, the 
ovary occupies almost the entire body cavity with large 
round yolky oocytes (Stage III), which remain arrested 
in the late G2 of the first meiotic prophase and wait for 
final maturation, which is also hormonally controlled. 
The process involves Germinal Vesicle Breakdown 
(GVBD), chromosome condensation, the first meiotic 
spindle assembly, and the first polar body extrusion. In 
most teleosts, 17α, 20β-dihydroxy-4-pregnen-3-one 
(17α, 20β-DHP) serves as a potent Maturation-Inducing 
Hormone (MIH)70, which acts on oocyte membrane 
receptors and activates the Maturation-Promoting 
Factor (MPF) in the oocyte cytoplasm to initiate final 
maturation71. MPF is composed of two subunits: (a) cyclin 
B, a regulatory subunit, and (b) cyclin-dependent kinase 
(Cdk1, or Cdc2, or p34 kinase), the catalytic subunit72. 
Under the stimulus of MPF, oocytes experience severe 
morphological modifications associated with advancing 
the meiotic cell cycle. In this process, the oocyte nuclear 
envelope or Germinal Vesicle Breakdown (GVBD) 
occurs at the prophase/metaphase transition, which is 
generally considered a symbol of oocyte maturation73 

(Figure 2).

3.  Melatonin and Hypothalamic-
Pituitary-Gonadal Axis

Available data on the structures and functions of the 
piscine endocrine system and its role in reproduction 
is based on the studies of species inhabiting mainly the 
temperate zone where seasonal fluctuations in daily 
photoperiods are more prominent. The individual function 
of the pineal organ28 and its hormone melatonin29 and 
photoperiods67,74,75 in reproduction has also been studied 
in sub-tropical carp. The pineal hormone melatonin 
transmits diurnal and seasonal time of the day information 
to many tissues and is crucial in regulating reproduction 
in seasonally breeding vertebrates76. As melatonin is 
rhythmically synthesized by the pinealocytes49 and retinal 
photoreceptor cells50, with a peak during the dark phase, 
it can interact with several peripheral and central tissues, 
including the brain77, pituitary78 and also gonads79,80 
in different vertebrates, including fish. The study on 
European sea bass (Dicentrarchus labrax) indicates that 
melatonin plays a neuromodulatory role in the brain via 
G-protein-coupled melatonin receptors63. The existence 
of melatonin receptors in the hypothalamus and pituitary 
suggests the role of melatonin in reproduction via the 
HPG axis81 (Figure 2). Recent work on zebrafish suggested 
the involvement of melatonin in regulating GnIH and 
GnRH functioning, thereby influencing the development 
and maturation of ovary82.

3.1  Effects of Altered Photoperiods and 
Exogenous Melatonin

Considering melatonin as the physiological messenger 
of the duration of darkness and, thereby, light, extensive 
studies have aimed at the role of endogenous and/
or exogenous melatonin on carp ovarian growth and 
maturation29,67,83. The physiological role of melatonin 
in regulating the reproductive events in adult female 
carp was studied by manipulating the environmental 
photoperiods (endogenous melatonin)74,75 as well as 
by administration of exogenous melatonin (through 
intramuscular injection) during different phases of 
reproduction in the carp29. Experimental studies provided 
evidence that exposure of carp to long photoperiods 
(LP; LD 16:08 h) (which reduces the physiological level 
of melatonin) during the pre-spawning phase leads to 
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Figure 2. Schematic presentation of the summary of information gathered from different studies to explain the possible 
role of melatonin in oocyte growth and maturation. Primarily, melatonin acts on the hypothalamus (A), pituitary (B), 
and ovary (gonad) (C), the three components of the HPG axis. In addition, it can also exhibit its action directly via oocyte 
receptors (D) or independent of the receptor (E). Once available in circulation, melatonin act on the hypothalamic 
secretion of GnRH, GnIH, and Kisspeptin to control the secretion of the gonadotroph cells of the adenohypophysis. 
Further, direct control of melatonin in the pituitary is evidenced from literature to control the secretion of FSH and LH 
from gonadotroph cells. FSH acts on the granulosa cells of the ovarian follicle to regulate the synthesis of 17β-estradiol 
(E2), which causes the synthesis of vitellogenin protein (Vg) in the liver. Vg, through circulation, is deposited in the 
developing oocyte; as a result, the Stage I oocyte is transformed into Stage II and then into Stage III within the ovary. 
The receptor-mediated direct action of melatonin has been demonstrated in the Stage III oocyte (right side enlarged 
view of maturing Stage III oocyte) of carp. Melatonin interacts with its receptor (MT-R) in the oocyte membrane to 
regulate the LH-induced Maturation-Inducing Hormone (MIH) and to accelerate its action for the formation of active 
MPF (a complex of cyclin B and Cdk1) from its inactive state. This induces GVBD in stage III matured oocytes (Left side 
magnified view of Stage III matured oocyte). In the upper left side inset, the experimental evidence of an in vitro study 
on the carp Catla catla (D) is shown. It shows that melatonin accelerates the action of MIH-induced oocyte maturation. 
The receptor-independent direct action of melatonin can lead to a better rate of maturation or GVBD by forming better-
quality oocytes. In the lower left side inset, experimental evidence of both DD and LL and the role of ovarian melatonin 
has been shown. Under the influence of DD, higher melatonin levels through ovarian melatonin receptors accelerate 
the GVBD. It also reveals the role of locally synthesized ovarian melatonin to induce oocyte maturation. In the upper 
right side inset, the action of exogenous melatonin on ovaprim (synthetic GnRH and domperidone) induced oocyte 
maturation in female adult carp, Catla catla, has been shown by injecting melatonin 2h before ovaprim dose. This leads 
to an increased rate of GVBD and active MPF formation by reducing the latency period. GnRH = gonadotropin-releasing 
hormone; GnIH = gonadotropin inhibitory hormone; FSH = follicular stimulating hormone; LH = luteinizing hormone; 
E2 = 17β-Estradiol; Vg = vitellogenin; MIH = maturation inducing hormone; CDK1 = cyclin-dependent kinase 1; MPF = 
maturation promoting factor; cGV = central germinal vesicle; GVBD = germinal vesicle breakdown; MT-R = melatonin 
receptors; DD = continuous dark; LL = continuous light.
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precocious maturation of the ovary75. Notably, during the 
preparatory phase, an increase in the vitellogenin level 
and the activity of steroidogenic enzymes was recorded. 
However, no ovarian weight gain and a relative number 
of different oocyte stages were found when the fish were 
exposed to LP during the preparatory phase. Similarly, no 
ovarian response was found when the fish were transferred 
to LP during the spawning and the post-spawning stages. 
However, the short photoperiod (SP; LD 08:16 h) (which 
increases the physiological availability of melatonin) was 
found to have an inhibitory effect on ovarian growth and 
maturation during pre-spawning and spawning phases or 
have no impact on ovarian functions during preparatory 
and post-spawning phases of an annual cycle75. 

On the other hand, exogenous injection of melatonin 
for 15/30 days in carp also accelerated oocyte growth 
during the preparatory phase, but a reduction in the 
number of developing oocytes (Stages II and III) was 
noted during the pre-spawning and spawning phases. 
Interestingly, no ovarian response to exogenous 
melatonin was found during the post-spawning phase29. 
Thus, the administration of exogenous melatonin exhibits 
a pro-gonadal effect during the preparatory phase but 
an anti-gonadal response during the pre-spawning and 
spawning phases of carp (Catla catla)84 as well as catfish 
(Heteropneustes fossilis)85. Moreover, treatment with 
exogenous melatonin by oral route with melatonin-rich 
pellets may cause a decrease in spawning frequency, 
number of spawned eggs, Gonado-Somatic Index (GSI) 
in females, and decreased sperm count, spermatocrit, 
and spermatozoa activity index in male Nile tilapia 
(Oreochromis niloticus)85. Similarly, another recent study 
in freshwater catfish (Mystus cavasius) revealed that 
administration of melatonin by the same oral route could 
reduce the level of GSI, the number of vitellogenic oocytes 
in the ovaries, and can repress serotonergic activity during 
the spawning season87. This indicates that, like exogenous 
melatonin treatment by injection, the application of 
melatonin with fish feed also has an inhibitory effect on 
gonadal maturity during the spawning phase. However, 
further investigations are essential to understand the role 
of melatonin on pubertal onset and gonadal maturation.

3.2  Influence of Melatonin on the 
Reproductive Endocrine Axis 

There is much experimental evidence that melatonin acts 
through the HPG axis79,88 or with brain and peripheral 

regions such as the diencephalon (hypothalamic portion)77, 
pituitary78, ovary4, and liver (site of vitellogenesis)89. 
Thereby, the hypothalamus (gonadotropin-releasing 
hormone, or GnRH), pituitary (follicle stimulating 
hormone, or FSH; luteinizing hormone, or LH), and 
ovary (E2) levels are influenced by melatonin to control 
the reproductive axis in fish90 (Figure 2).

3.2.1  Regulatory Effects of Melatonin on the 
Hypothalamus 

In several fish species, melatonin showed an inverse 
relationship with the GnRH, a decapeptide hormone 
from hypothalamic neurosecretory cells that acts on its 
receptors in the pituitary to regulate the production and 
release of gonadotropins from the adenohypophysis91. 
It is also claimed that melatonin has neither anti-
gonadotrophic nor pro-gonadotrophic effects. Instead, 
the changing duration of the night leads to changing 
secretory patterns of melatonin, which provides the idea 
about the time of the years by conveying the message over 
the HPG axis9,21. According to Malpaux et al.,92 and Revel 
et al.,93 melatonin does not seem to act on GnRH neurons, 
while others stated that melatonin might act directly on 
GnRH neurons under the influence of PKA, PKC, and 
MAPK pathways94. The exact mechanism of melatonin 
action in the brain must be investigated further in various 
fish species.

The identification of Gonadotropin-Inhibitory 
Hormone (GnIH), a newly discovered hypothalamic 
neuropeptide that, unlike GnRH, actively inhibited 
gonadotropin release in quail95 and other vertebrates, 
including teleosts96, has added a new dimension to the 
current understanding of the hypothalamic regulation 
of pituitary-gonadal functions in vertebrates (Figure 
2). Melatonin appears to induce GnIH expression by 
regulating directly the GnIH neurons via the melatonin 
receptor. Transcription of the GnIH gene in the brain of 
zebrafish (Danio rerio) upregulated in a constant lighting 
environment when melatonin was recorded low in the 
whole brain and ovary but downregulated in continuous 
dark conditions when melatonin was recorded high 
in the mentioned organs. Similarly, reports show that 
exogenous melatonin treatment can reduce GnIH  gene 
expression in a dose-dependent manner in the cultured 
brain82. Moreover, in Nile tilapia (Oreochromis niloticus), 
melatonin can suppress the HPG axis via the action of 
GnIH97. Thus, GnIH can influence the reproductive axis 
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by transducing photoperiodic information via changes 
in the melatonin signal94. However, further investigation 
into the role of GnIH and its interactions with GnRH and/
or melatonin in determining reproductive periodicity in 
fish is needed. 

Kisspeptin, the product of the kiss1 or kiss2 genes, 
has a stimulatory effect on GnRH neurons via its receptor 
(GPR54), causing the HPG axis to be upregulated. 
Kisspeptin and GPR54 are crucial players in the 
physiological regulation of reproductive maturation and 
function, including the timing of puberty. According 
to a recent study, oral administration of melatonin can 
reduce transcript levels of kisspeptin (kiss1 and kiss2), 
gonadotropin-releasing hormones (gnrh1), and the 
β-subunits of gonadotropins (fshβ and lhβ) in the brain 
of the sapphire devil (Chrysiptera cyanea). Thus, it was 
demonstrated that long-term treatment with melatonin 
may impair the transcript levels of genes concerned with 
the HPG axis in reproduction98. The dynamic control of 
GnRH secretion by the hypothalamic neurons transmits 
the negative and positive feedback effects on sex 
steroids, thereby regulating fertility and synchronizing 
the reproductive events with the environmental 
(photoperiodic) cues99. Available evidence suggests a 
functional relationship between melatonin and various 
hypothalamic peptides (GnRH, GnIH, and kisspeptin) 
regulating seasonal reproduction (Figure 2). Yet, more 
experimental evidence from diverse fish species must be 
gathered to support the hypothesis.

3.2.2  Regulatory Effects of Melatonin on the 
Pituitary Gland

The first evidence of melatonin in the regulation of 
gonadotropins (FSH and LH) came from a study on the 
Atlantic Croaker (Micropogonias undulatus)100, in which 
it was found that a low dose of melatonin upregulates 
the LH release by pituitary cells in culture101 while in 
vivo administration of melatonin during the light phase 
caused significant elevations in plasma LH levels in fish 
with fully developed gonads. Further, opposite results are 
also available where melatonin reduces the expression of 
LHβ as well as FSHβ mRNA98,102. Moreover, reports are 
also available to the effect that melatonin administration 
can reduce the LH content but stimulate FSH secretion103. 
Thus, by investigating the pituitary actions of melatonin, 
it can be argued that melatonin might modulate 

neuroendocrine functions by targeting the pituitary gland 
as well, but such modulation may differ in different groups 
of animals. There is convergent evidence to the effect that 
melatonin receptors (MT1 and MT2 subtype) are present 
in pike and trout pituitary glands104 , indicating regulation 
of seasonal reproductive events via melatonin (Figure 2).

3.2.3  Regulatory Effects of Melatonin on Ovarian 
Sex Steroids 

The HPG axis is primarily responsible for synthesizing 
sex steroids and ultimately exerts their effect on fish 
reproduction. In general, ovarian steroidogenesis depends 
on the interaction between theca and granulosa cells, which 
are involved in follicular development and maturation. 
However, in some fish, such as medaka, the granulosa 
cells of preovulatory follicles can produce various steroid 
hormones without the involvement of theca cells105. In 
most fish, FSH stimulates follicular E2-synthesis and 
incorporation of vitellogenin into oocytes, while LH 
stimulates steroidogenic activity for the synthesis of 
progestins (17α, 20β-dihydroxy-4-pregnen-3-one or 
17α, 20β DP) or Maturation-Inducing Hormone (MIH), 
the latter playing a crucial role in oocyte maturation106. 
The endogenous titer of E2 in carp maintains a high 
level during the spawning phase (June-August) as 
evidenced by the activity of ovarian steroidogenic 
enzymes such as 3-Hydroxysteroid Dehydrogenase 
(3β-HSD) and 17-Hydroxysteroid Dehydrogenase (17β-
HSD)107. However, melatonin levels were highest during 
the post-spawning phase of an annual cycle (September-
December)29. Irrespective of the reproductive stage, E2 
levels in serum had a daily peak in the mid of the day 
and a lowest in the early morning, but in a seasonal cycle, 
E2 was found to be highest during the spawning phase. 
The serum MIH, on the other hand, failed to exhibit any 
significant daily variations and changed significantly over 
an annual cycle, with a shallow value in the preparatory 
phase (January-March), a gradual increase in the pre-
spawning phase (April-May), a peak in the spawning 
phase, and was undetectable during the post-spawning 
phase80. Hong et al.,108 investigated the potential effect 
of melatonin on the production of progestin, 17α, 20β 
DP, in mudskipper (spring spawn) with fully developed 
ovarian follicles during the spawning season and found 
that plasma levels significantly increased after melatonin 
injection. Numerous studies have established a role for 
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ovarian membrane progesterone receptor beta (mprb) in 
progesterone-induced oocyte maturation106,109–111. Notably, 
a recent study82 showed that higher mprb expression in 
the oocyte under constant dark conditions indicates more 
oocyte maturation; in contrast, maturation in the oocyte 
was prohibited under constant lighting conditions. This 
reciprocal relationship could shed light on several reports 
that melatonin has a pro- or anti-gonadal effect in the 
same species at various times of the year4,21. Furthermore, 
melatonin uniquely counteracts the effects of estrogen by 
interacting with the estrogen receptor signalling pathway. 
Melatonin binds to its receptors and inhibits estrogen 
receptor expression, thereby preventing estradiol from 
attaching to its receptors112. Indeed, several views have 
been proposed to explain the anti-estrogenic action of 
melatonin in the reproductive system revealing that 
melatonin reduces estrogen production by modulating 
the various steroid hormone biosynthetic enzymes. This 
efficacy expounds the role of melatonin as a selective 
estrogen enzyme modulator8,91,92 in a dose and time-
dependent manner113.

4.  Melatonin in the Regulation of 
Oocyte Maturation

According to the available literature, it is presumed that 
an excess amount of melatonin, either added exogenously 
or produced endogenously, plays a significant role in 
regulating the annual ovarian activities in the carp. Still, 
the responsiveness of the ovary to the melatonin varied 
with the reproductive status of the fish3. In addition, it is 
generally believed that the action of melatonin on the ovary 
is mediated via the HPG axis79,88. But the demonstration 
of the melatonin receptor protein (MT1) (37 kDa) in the 
carp ovary114 supported the hypothesis that melatonin 
exerts its action directly as well on the ovary, and 
modulates the activity of MIH83 by altering membrane 
progesterone receptor (mpr) α and β expression115 during 
maturation of oocyte following the formation of MPF. 
According to a recent report, melatonin pre-treatment 
in carp by intramuscular injection upgrades the ovaprim 
(synthetic GnRH and domperidone) actions on final 
oocyte maturation116. 

The pre-ovulatory gonadotropin surge promotes 
final oocyte maturation or the resumption of meiosis 
in vertebrates. In most fish, the oocyte maturation is 
mediated by the MIH that activates the cytoplasmic MPF 

by the oocyte membrane-induced signalling mechanism. 
The in vitro study by Chattoraj et al.,83 reported that 
melatonin incubation with denuded oocytes, especially 
4 h before the addition of MIH, stimulated the MPF 
functions. Melatonin pre-treated MIH incubated oocytes 
exhibited increasing cyclin B levels up to 12 h, which 
resulted in the early maturation of oocytes compared 
to MIH alone. Notably, only MIH-mediated oocyte 
maturation requires about 16 h of incubation. Moreover, 
the determination of H1 kinase activity as an indicator 
of MPF activity in oocytes reveals that melatonin pre-
incubation increases MIH stimulation of histone H1 
phosphorylation compared to MIH alone. Thus, the 
study showed that prior incubation with melatonin could 
accelerate the action of MIH on oocyte maturation4 
(Figure 2).

4.1  Mode of Action of Melatonin on the 
Ovary

4.1.1  Melatonin Actions on the Ovary via Ovarian 
Receptors

The direct action of melatonin on ovarian functions 
gained attention from studies in isolated human oocytes117 
and in rat ovaries118. The function of membrane-bound 
Mel1aR in mediating intracellular effects of melatonin is 
well understood77, but the role of cytosolic Mel1aR was 
unknown until 2009 when melatonin receptors were found 
in both the membrane and cytosolic fractions of carp 
ovarian homogenate114 (Figure 2). The immunoreactivity 
of Mel1aR protein in the carp ovary is highest at midnight 
and lowest at midday in a diurnal cycle. The pattern of 
day-night rhythms in ovarian Mel1aR is not influenced by 
the fish’s reproductive status or changing photo-thermal 
conditions. The nocturnal pattern of ovarian Mel1aR, on 
the other hand, varies with fish reproductive stages, with 
a peak during the spawning phase and lowest during the 
post-spawning phase119. There have been investigations 
that demonstrated the expression of melatonin receptors 
in teleost ovaries: MTNR1a, MTNR1b, and MTNR2 
protein in the Indian major carp114,119, MTNR1a, MTNR1b, 
and MTNR1c mRNA in mudskipper (Boleophthalmus 
pectinirostris)108 and orange-spotted grouper (Epinephelus 
coioides)120, MTNR1a and MTNR1c in Nile tilapia 
(Oreochromis niloticus)121, MTNR1aa and MTNR1ab 
in Zebrafish (Danio rerio)82 and MTNR1a protein in 
medaka122. These findings suggest the direct effect of 
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melatonin on the fish ovary by activating the melatonin 
receptor. However, recent studies revealed that melatonin 
is produced in the ovary and directly influences ovarian 
physiology at the ovary level. Therefore, fish oocyte 
maturation may be aided by the direct effects of locally 
synthesized melatonin in the ovary.

Studies on a variety of fish (both in tropical and 
temperate, as well as in vivo and in vitro) provide 
evidence that melatonin regulates the various stages 
of reproduction83,115. A recent study on zebrafish 
(Danio rerio)82 investigated the impact of different 
photic conditions on the melatonin profile in the brain 
and ovary, demonstrating their direct role in ovarian 
physiology, including maturation (Figure 2). The study 
further investigated the measurement of GVBD; MPF; 
and the expression of mprb, intra-ovarian growth factors 
such as transforming growth factor beta-1a or tgfb1a, 
bone morphogenetic protein 15 or bmp15, and ovarian 
melatonin receptors (mtnr1aa and mtnr1ab). Numerous 
studies on tropical carp and zebrafish revealed that 
melatonin and its receptor in the ovary play a crucial 
role in accelerating oocyte maturation83,114,115. These 
findings were supported by a recent study in zebrafish82, 
which revealed elevated ovarian melatonin levels and its 
receptor (mtnr1aa and mtnr1ab) under constant darkness 
conditions. However, the independent melatonin-
synthesizing machinery found in the ovary of zebrafish 
and tropical carp30,38 suggests that increased local and 
de novo melatonin synthesis in the ovary may enhance 
oocyte maturation, though their mode of action may 
differ from other organs (Figure 2). According to Khan et 
al.38, increased melatonin signals from the brain may be 
received by the ovarian melatonin receptors coordinating 
and regulating ovarian melatonin biosynthesis and 
leading to oocyte maturation. Overall, the highly activated 
melatonin receptors in the ovary under the condition 
of constant darkness resulted in a higher percentage 
of GVBD via a decrease in the abundance of the upper 
35-kDa form of Cdc2, with a corresponding accumulation 
of Cyclin B1, indicating active MPF formation82 (Figure 
2). Moreover, the action of non-pineal melatonin on 
ovarian physiology was revealed in another study46 in 
which, hepatic melatonin was shown to play an important 
role in seasonal growth and development of oocytes as 
well as endogenous levels of ovarian steroids in the carp, 
Catla catla. This effect of hepatic melatonin is borne out 
in a new possibility that might play a role in the process of 

vitellogenesis in the liver and, thereby, the seasonality of 
ovarian functions.

4.1.2  Melatonin Actions on the Ovary 
Independent of Receptors

Melatonin can pass through the cell membrane due to 
its amphiphilic nature and may act as a highly prevalent 
direct free radical scavenger and indirect antioxidant123. 
This raises the possibility that, in addition to its receptor-
mediated actions, this indoleamine hormone may 
have a receptor-independent step in regulating several 
physiological functions, including reproduction3,124. 
Moreover, melatonin can donate electrons to reduce 
the reactivity of molecules with an unimpaired electron 
in their valance orbital, i.e., free radicals, allowing it to 
interact directly with potentially harmful agents without 
first binding to receptors125 (Figure 2).

5.  Conclusion
The multiple sites where melatonin is produced from 
tryptophan may indicate diverse functions depending 
on the tissue/cells in which it is being synthesized, 
suggesting its physiological importance for cell functions. 
Surprisingly, the study on fish pineal and retina provides 
the basis for the belief that both organs/tissues are 
significant sources of circulating melatonin by showing 
parallel rhythmic changes in melatonin concentrations 
in circulation. Although the retina and the pineal share 
common intracellular photoreception mechanisms, the 
retina may serve a complementary or supplementary role 
to the pineal functions, even though the pineal appears 
to be the primary source of serum melatonin. However, 
direct evidence of melatonin synthesis in any fish ovary 
remains controversial; as a result, melatonin detected 
and measured in the fish ovary casts doubt on its cellular 
site of synthesis. Moreover, the gastrointestinal tract 
and the liver are vital sites for melatonin production 
and release, but their rhythmic characteristics differ. 
Though melatonin synthesis in the liver is controlled by 
environmental photothermal cues, melatonin synthesis in 
the gut is independent of environmental LD conditions, 
bespeaks a hitherto unknown non-photic circadian 
function.

The current understanding of the role of melatonin in 
regulating oocyte growth and maturation in fish is solely 
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based on melatonin, which is produced endogenously 
by the pineal organ or added exogenously by injection4. 
The altered amount of physiological melatonin obtained 
through either photoperiodic modulation or exogenous 
injection plays a significant role in regulating gonadal 
activities in fish, resulting in a pro- or anti-gonadal 
response depending on the reproductive status of the  
fish4,29,67,68,72,74,75,80,83,88,114,116,126. Despite promising data on 
pineal gland-derived melatonin and being an effective 
candidate in fish reproduction, this molecule has been 
facing severe problems in its application in aquaculture 
over the last decades. Major setbacks in the daily 
use of melatonin in aquaculture are: (i) struggle in 
photoperiodic alterations in a fish farm; as an increase 
in natural day-length needs the additional lighting 
on the fishpond, which results in added expense for 
consuming extra electricity, thereby, the entire process is 
not cost-benefit for the farmer; (ii) reduction of natural 
photoperiod also requires the covering of pond, which 
is not a feasible approach in extensive aquaculture, that 
also hinder the fertility of the fishpond; (iii) exogenous 
melatonin treatment for consecutive days to each fish 
is also a very stressful practice that is not feasible to 
perform regularly in large-scale aquaculture. The price 
of commercially available melatonin is also a matter of 
concern58. Hence, melatonin has never been implemented 
in large-scale aquaculture despite being a potent 
candidate for regulating fish reproduction. Recently, at 
least two reports were documented, indicating that the 
oral supplementation of melatonin also has a significant 
effect on reproductive functions in fish species86,87. This 
invites us to think about the extra-pineal or extra-retinal 
sources of melatonin, especially those not controlled by 
photoperiodic regulation, like gut melatonin. Thus, the 
melatonin synthesized within the gut may be sought 
under discussion in regulating and manipulating 
physiological melatonin to exert any effect on oocyte 
growth and maturation precisely. However, unfortunately, 
such an experiment-based study is missing in the available 
literature.
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