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Abstract
Breast cancer is the most common cause of death in women around the world. Epigenetic changes modulate transcriptional 
activity in several diseases, including cancer. Cancer epigenetics explains gene expression changes without DNA mutations. 
Aberrant DNA methylation, histone modifications, and mRNA expression promote tumоr growth and metastasis. In cancer 
cells, chemo-resistance occurs via Multidrug Resistance (MDR), apoptotic suppression, DNA damage response, epigenetic 
alterations, and competitive endogenous RNA. Owing to drug resistance, quiescence, and varied cancer cell production, 
Cancer Stem Cells (CSCs) are critical to tumоr formation, metastasis, and recurrence after therapy. In addition, MDR 
promotes drug efflux, enhanced secretion of growth factors, and DNA modifications in cancer patients, thereby causing 
fatalities in cancer patients. Heterogeneity and epigenetic plasticity cause drug resistance due to various factors. However, 
the molecular mechanism of epigenetic drug resistance is still unravelled completely. Overexpressed c-MYC leads to cancer 
and tamoxifen resistance. Despite the molecular underpinning of cancer development, drug resistance is continued in 
a myriad number of cases. Epigenetic changes affect CSCs viability and tumоr aggressiveness. These processes can be 
blocked by medicines. Tamoxifen is used widely for breast cancer treatment; however, latent treatments have emerged 
as a tamoxifen-resistant phenotype. Epigenetic modifications cause resistance by upregulating and altering the tumоr 
microenvironment and deregulating the immune response. The knowledge of epigenetic pathways in clinical treatment 
resistance may enhance the outcome of cancer patients. Multifactorial heterogeneous resistance is common in many 
targeted therapies. Many resistance mechanisms to targeted therapy may converge, including route reactivation. This 
review summarizes the epigenetic alterations, MDR, and development of tamoxifen resistance in breast cancer.
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1. Introduction
Tamoxifen has been studied extensively and is used 
in the primary treatment of breast cancer. Although 
tamoxifen has been used to treat various ailments, it has 
garnered a preponderant preference for the treatment 
of early breast cancer since its inception. Tamoxifen, 
established in the early 1970s, is an anti-estrogen 
medication. Over the past four decades, tamoxifen has 
been used to treat breast cancer in women throughout the 
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globe, resulting in a 30% reduction in the death rate1,2. 
Tamoxifen is the most successful therapy and care for 
breast cancer; however, the resistance of cancer cells is a 
key downside of its use3. Tamoxifen is an FDA-approved 
selective estrogen modulator hydrophobic drug that is 
administered primarily to patients with postmenopausal 
breast cancer4,5. The success of tamoxifen in treating 
Ductal Carcinoma In Situ (DCIS) and the efficacy of new 
endocrine treatments as a tolerability profile with efficacy 
in both premenopausal and postmenopausal women have 
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set a benchmark in cancer management. In addition, 
tamoxifen, administered orally, is a potential treatment 
for bipolar disorder6,7. Tamoxifen has a mechanistic 
involvement in bipolar disorder due to its antagonistic 
effects on Estrogen Receptors (ERs) in breast tissue and 
the suppression of Protein Kinase C (PKC)8,9. Tamoxifen 
has played a vital role in saving many lives in medical 
oncology and healthcare during the past few decades10–13.

Tamoxifen reduces ER function in hormone-sensitive 
breast cancers by competing with estrogen for the binding 
of ER, thereby limiting the estrogenic actions that cause 
cancer formation and proliferation14,15. However, high-
level resistance to hormone therapy has been discovered 
in most HIV-positive people, which results in de novo or 
acquired resistance. Therapies target estrogen synthesis or 
ER activation. Even though these treatments have helped 
a significant number of individuals, drug resistance 
continues to be a serious issue16,17. The ability to develop 
resistance to established therapy characterizes the disease 
viz., cancer, thereby resulting in higher cancer-related 
mortality rates18.

Resistance is a well-known phenomenon that 
arises when illnesses develop resistance to therapeutic 
interventions. This concept was first presented when 
bacteria developed resistance to specific antibiotics; 
however, comparable processes have been observed 
in other diseases, including cancer18,19. Multidrug 
Resistance (MDR) is a recognized phenomenon 
clinically, where human tumours that develop resistance 
to one form of treatment develop resistance to numerous 
additional medications that are sometimes distinct in 
structure and mechanism of action20. Efflux of the drug in 
microorganisms and drug-resistant cancers is disorder-
specific18. The discovery of MDR pathways in human 
cancer led to the development of therapeutic medicines 
to combat MDR20. Tamoxifen resistance is the cause 
of treatment failure in bone cancer cases21. Tamoxifen 
tolerance has unknown mechanisms22. Recently, various 
molecular pathways paved the way to develop tamoxifen 
resistance, such as receptor tyrosine kinase pathways and 
miRNAs23. Although modern chemotherapy treatment 
has improved, it is still ineffective against disseminated 
tumours. Resistance to anticancer treatments is a 
complex process that begins with changes in drug 
targets, implying the need for more targeted therapies in 
the therapeutic arsenal24.

Furthermore, there is a growing body of data 
showing that tamoxifen has immunomodulatory 

effects, including findings from in vitro and in vivo 
trials, as well as findings from breast cancer patients 
who took the medication25. These data suggest that 
tamoxifen may trigger a change in immunity from 
cellular (T-helper 1) to humoral (T-helper 2) levels26. 
The recent crystallization of the estradiol and raloxifene 
ER complex provides intriguing insights with regard to 
anti-estrogen action and, for the first time, established 
a mechanism of tamoxifen drug resistance27. Epigenetic 
processes influence cancer, chromosomal imprints, 
gene suppression, diversification, morphogenesis, and 
X chromosome inactivation28. The resistance to cancer 
treatment may be influenced by epigenetic mechanisms, 
which are transmitted somatically during cell division. 
Owing to the rapid rate of epigenetic change in tumours, 
a diverse set of gene expression patterns may evolve as 
a result of medication selection throughout treatment, 
leading to acquired resistance29. Simultaneous epigenetic 
control of numerous genes results in the development 
of drug resistance in the tumours, and this has crucial 
implications for biomarker investigations of clinical 
outcomes after chemotherapy and therapeutic treatments 
to avoid or regulate drug resistance. As a result, new 
knowledge about the molecular mechanisms of tamoxifen 
resistance, MDR, and epigenetic regulation will aid in the 
development of drug resistance-fighting regimens, the 
discovery of novel therapeutic agents with a lower risk 
of developing resistance, and the development of more 
effective treatment strategies30.

2. Tamoxifen

2.1 History of Development 
Tamoxifen is a synthetic non-steroidal anti-estrogen 
developed by a team of chemists, endocrinologists, 
and reproductive researchers at Imperial Chemical 
Industries Ltd., now known as AstraZeneca, in the 
late 1950s31. Beatson hypothesized, in the late 1800s, 
that oophorectomy may cure invasive breast cancer in 
premenopausal women. Tamoxifen was used originally 
to treat infertility in 196632. Tamoxifen became the first 
targeted breast cancer agent in 197233–37.

In 1978, tamoxifen was used mostly in postmenopausal 
individuals with metastatic breast cancer. Its remedial 
element now includes Stages I and II patients and early 
and late postmenopausal women38. Tamoxifen was 
designed to treat contralateral breast cancer and is being at 
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present studied as a chemo-preventive therapy in healthy 
high-risk women22. Recently, several articles on putative 
tamoxifen-resistance pathways have been published. V.C. 
Jordan’s technique of targeted ER-positive malignancies 
with long-term adjuvant tamoxifen saved a large number 
of breast cancer patients39–41. Tamoxifen resistance is 
thought to be the result of several reasons. Knock-down 
of ER, upregulation of a particular growth factor receptor, 
stimulation of PI3K/AKT/mTOR pathway (in particular 
PTEN inactivation), and NF-κB signaling play important 
roles in tamoxifen resistance4,42.

2.2 Tamoxifen Resistance
In the 1950s, Ethamoxytriphetol (MER-25 or Merrell) and 
Clomiphene citrate (Clomid, Merrell) were brought up43. 
Walpole and colleagues, in the 1960s, produced various 
triarylethylene derivates, which include alkyl substitutes 
for chlorine in clomiphene for the treatment of hormone-
dependent cancers. Animal research, at the time, had 
suggested that clomiphene and similar chemicals caused 
cataracts by accumulating desmosterol, a cholesterol 
precursor43,44. Some breast cancer tumours may develop 
tamoxifen resistance despite its effectiveness. Clinical 
studies revealed that three years of intermittent treatment 
of tamoxifen leads to the development of tamoxifen 
resistance. Down-regulation, mutation, or deletion of 
ERs and de-escalated co-activator activation changed 
tamoxifen pharmacology45,46. Tamoxifen-induced MCF-7 
tumours in nude mice may be further accelerated by 
estrogen, which tamoxifen inhibits, thereby implying that 
tamoxifen has both aggressive and antagonistic qualities 
in these tumours47.

2.3 Tamoxifen: Mechanism of Action 
Tamoxifen has a dual mode of action: (i) it competes with 
17β-estradiol (E2) at the receptor site, reducing E2’s breast 
cancer growth; and (ii) it binds DNA upon metabolic 
activation, beginning carcinogenesis. Tamoxifen 
competes with ER of breast cancer48. Tamoxifen 
treatment reduces the breast tumour and is associated 
with decreasing the serum insulin-like growth factor 
(IGF-1)49 while enhancing sex hormone binding globulin 
(SHBG)48,50,51. An increase in SHBG inhibits free estradiol, 
which reduces tumour-promoting substances. Tamoxifen 
treatment kills the ERα-positive breast cancer cells52. 
Protein kinase C suppresses gene transcription, resulting 
in this condition52. Hypotheses explaining tamoxifen’s 

apoptotic activity include a threefold spike in cytoplasmic 
and mitochondrial calcium ions or TGF-β production52,53.

Tamoxifen functions as an estrogen agonist and 
antagonist in different parts of the body. It binds to 
ERs preferentially, producing both estrogenic and 
anti-estrogenic effects; as a specific ER modulator, it 
is patient-specific due to its binary conditioning54. It 
competes with estrogen in breast tissue, causing anti-
estrogenic and anticancer effects. Intracellular processes 
impede cell cycle progression. It boosts rather than 
inhibits ER in bone, which may avoid fractures in 
postmenopausal women55. It also works as an estrogen 
agonist in premenopausal women’s hypothalamus, thereby 
increasing gonadotropin levels and causing ovulation. 
Tamoxifen is metabolized in the liver by a role to CYP450 
enzymes such as 2B6, 2C9, 2C19, 2D6, and 3A4. The half-
life of tamoxifen is 5−7 days and N-desmethyl tamoxifen 
is 14 days56,57.

The estrogen–ER complex homodimerizes and 
attaches to estrogen response elements in estrogen-
sensitive genes. AF1 and AF2 (transcriptional 
co-activators) bind with other molecules to boost RNA 
Pol II activity and control gene activity58. Tamoxifen 
competes with estrogen for ER binding59. Tamoxifen–
ER complexes bind to estrogen-sensitive genes and 
form homodimers58. However, only if AF1 is operational 
while on tamoxifen-ER binding60. When AF2 is inactive, 
estrogen-responsive gene transcription and co-activator 
binding are diminished. As a consequence, tamoxifen 
slows cell growth by blocking the G1 phase of the cell cycle. 
Tamoxifen may have several modes of action, tamoxifen 
may affect breast cancer epithelial cells indirectly by 
altering cytokine levels both locally and systemically61. It 
increases the generation of TGF-β, which inhibits breast 
cancer cells61,62. Tamoxifen suppresses IGF-1, an anti-
angiogenic breast cancer mitogen63,64. Tamoxifen binds to 
non-specific sites as well as particular binding sites65.

3.  Mechanisms of Resistance: 
Endocrine Therapy

Significant advancements in the treatment of early breast 
cancer have been observed during the past 25 years. One of 
the most significant achievements in respect of hormone 
receptor-positive breast cancers is the widespread use of 
Endocrine Therapy (ET) similar to tamoxifen, a specific 
selective ER modulator, or Aromatase Inhibitors (AIs), 
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both nonsteroidal analogous (such as letrozole) and 
anastrozole or steroidal comparable (such as exemestane), 
which block estrogen production66. The resistance that 
develops during therapy might be inherent, which means 
that it exists before the commencement of the treatment 
or is acquired during the treatment46,67.

4. Estrogen Receptor
Estradiol (E2) binds to ER, a ligand-activated key 
transcription that interacts with estrogen response 
elements (EREs) in nonsupervisory regions of its target 
genes68,69. ER may homo- (ERα-ERα) or heterodimerize 
(ERα-ERβ) to interfere with transcriptional activity, 
which is encoded by genes on chromosomes 6 and 14. Each 
ERα/ERβ subtype regulates genes differently, expresses 
differently in different cells and tissues, and influences 
various downstream signalling cascades70. ER activation 
enhances tumorigenesis by proliferating and invading 
breast cancer cells. ER reduces cell proliferation, decreases 
epithelial-to-mesenchymal transition, and boosts 
tamoxifen sensitivity71,72. High ER levels in individuals 
without ER are related to higher survival and tamoxifen 
response, whereas low ER levels may lead to endocrine 
treatment resistance73,74. ER amplification in tamoxifen-
resistant women’s pre-invasive metastatic breast cancer 
seems to inhibit ER-stimulated transcription.

Both ERα and ERβ subtypes may vary in the 
regulation of gene expression, cellular location, and 
cancer pathogenicity75. When compared with the full-
length ER protein, at least two docked ER isoforms (ER36 
and ER46), which result from alternative splicing, exon 
deletion, and promoter activity, act in a dominant negative 
manner76,77. In endometrial cells, ER36 was limited to 
the mitochondrial matrix, had no genetic activities, and 
was associated with tamoxifen resistance; however, ER46 
increased tamoxifen perceptivity in tamoxifen-resistant 
MCF-7 cells. On the basis of the removal of exon 8, ER 
comprises many isoforms similar to ER1 (full-length), 
known as ER2 to ER5. Nuclear ER2 and ER5 have been 
shown to decrease ER function while promoting ER1 
transactivation. As they are co-expressed consistently 
with ER78, their relevance to endocrine resistance is 
being investigated at present. As ER subtypes push and 
pull, their percentage is being examined as a diagnostic 
tool for endocrine drug response79. Owing to a paucity 
of adequate antibodies, subtype data are questionable80. 
Large quantities of tyrosine kinase receptors, signalling 

proteins, and ER are predicted in caveolae and lipid 
rafts81,82. In tamoxifen-resistant cells, ER relocation 
increases epidermal growth factor receptor (EGFR) 
binding and downstream signalling. Another endocrine 
resistance media is characterized most probably in this 
manner83 (Figure 1).

4.1 Estrogen Receptor Alteration
A possible tamoxifen resistance mechanism for ER 
protein structural alterations results in the altered 
affinity of the receptor. Defects in the ER gene encoding 
may cause aberrant receptors physically. These 
mutations may inactivate the ER, giving the tumour an 
ER-negative look. If mutations affect critical receptor 
amino acids, functionally active ER species with distinct 
estrogen and tamoxifen specificities may arise22. There 
are innumerable studies reporting that mutations 
and mRNA splice variants in ERα result in tamoxifen 
resistance84–86.

Figure 1.  Anti-estrogens, which are estrogen blockers, 
function by inhibiting the Estrogen Receptor 
(ER) either by inhibiting its nuclear pathways or 
by inhibiting the extranuclear pathways. In the 
nuclear pathway, anti-estrogen binds to the ERα 
dimer preventing it from transcribing, thereby 
leading to cell apoptosis. In the extranuclear 
signaling pathways, the cell survival of the 
cancer cells inhibited by blocking via MAPKs, 
PI3K, ERK1/2, and AKT signaling molecules.
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4.2 Estrogen Receptor Cofactors
ER is a modulator protein containing an N-terminal 
transactivation domain (AF1), and a C-terminal Ligand 
Binding Domain (LBD). Co-activators/co-repressors, 
and transcriptional and histone modifiers comprise the 
bound ER87. When ligand is bound, helix5 and 12 create a 
hydrophobic pocket and protein surface for interacting with 
co-activator LXXLL motifs87. Tamoxifen binds to the same 
regulatory sites as estrogen-bound ER, but shifts helix 12 
away from the ligand binding pocket, which leads tamoxifen-
bound ER to employ a co-repressor group rather than a 
co-activator group to counterbalance hormone response88,89.

High levels of ER co-activators, such as amplification in 
ER co-activator (AIB1), have been established to augment 
tamoxifen’s agonist effect and contribute to tamoxifen 
resistance87,90. Tamoxifen’s agonistic actions on the ER 
were exacerbated by a prolonged decrease in nuclear 
receptor co-repressor 1, and co-repressor activity during 
tamoxifen therapy, which increases tamoxifen resistance91. 
ER’s non-classical genomic effects include indirect DNA 
binding. Membrane-bound non-classical signalling 
activates MAPK and G-protein-coupled receptor 
activation leading to the induction of mitogenesis92. 
Tamoxifen−ER antagonist activity is transformed into 
an aggressive action as a result of these complexes, which 
influences breast cancer cell proliferation93. An increase 
in the expression of these factors has also been linked 
to endocrine treatment resistance94. SRY-box 9 (SOX9) 
is a stem cell factor that promotes mitosis, migratory 
phenotype, and endocrine treatment resistance95. FOXA1 
co-expresses with ERα throughout mammary gland 
development and early breast cancer formation69,96. 
Over-expressed FOXA1 stimulates tumorigenesis and 
endocrine resilience proteins, including IL-897. 

Endocrine resistance is also fueled by non-ER-
dependent reprogramming chromatin landscapes. EZH2, 
a chromatin-altering enzyme, confers endocrine treatment 
resistance by reducing GREB1, an ER cofactor. EZH2 
is high in tamoxifen-resistant samples, and low GREB1 
changes the ER transcriptional machinery and transcript, 
which leads to resistive phenotypes in hormone-positive 
cells95. In another research, drug-sensitive MCF-7 cell lines 
have different open chromatin landscapes98. Traditional 
ER signalling had no discernible benefit in these cell lines. 
Nonetheless, chromatin remodelling enriches and over-
expresses the NOTCH network and some other molecular 
targets in resistant cells, with NOTCH3 responsible for 

resistance. NOTCH3-activated PBX1 induces endocrine 
resistance genes98. The crosstalk of PKC-α and Notch-4 
signalling induces tamoxifen resistance in breast cancer99. 
Recently, the over-expression of Notch-1 has been 
associated with the development of tamoxifen resistance 
and MDR in breast cancer100.

4.3  Estrogen Receptor and its Signaling 
Pathways

Post-translational modifications to the wild-type ER 
protein result in ligand-independent ER activation 
consistently. Growth factor signalling protein over-
expression alters the ER, making the cell tamoxifen 
resistant. The phosphorylation of the ERα is due to the over-
expression of receptor tyrosine kinases corresponding to 
HER2, EGFR, and IGF1R101–103. Phosphorylation activates 
the ER in the absence of a ligand, rendering cells tamoxifen 
resistant. Endocrine resistance has also been connected to 
MAPK or the PI3K/AKT signalling pathway activation105. 
Furthermore, HER2 transfection in hormone receptor−
positive cells down-regulates ERα, thereby providing 
resistance to anti-hormone treatment105,106. c-Jun/AP1 
exerted over-expression and reduced the sensitivity of 
tamoxifen treatment in ERα-positive breast cancers107. 
Interluekin-6 (IL-6) potentiates the ERα signalling and 
activates cell proliferation in MCF-7 breast cancer cells108.

5.  Acquired Tamoxifen Resistance: 
Potential Mechanisms 

Several pathways have been connected to the development 
of acquired resistance to tamoxifen. Many of the proposed 
processes, on the other hand, have no conclusive evidence 
to back them up. Tamoxifen has been found in in vitro 
and in vivo studies to promote cell proliferation after 
prolonged exposure65,109. The ability of tamoxifen to 
select a sub-clone of tamoxifen-stimulated cells changes 
tamoxifen in such a way that the cells release a stimulatory 
signal or generate a genetic mutation, which increases 
unknown drug sensitivity. Tamoxifen has been discovered 
to form DNA adducts in the liver of rats, implying that it 
may have genotoxic qualities that cause mutations110.

Even though the mechanisms which cause tamoxifen 
resistance are unknown, recent research suggests that 
many pathways are implicated. Changes in ER levels, lower 
ER affinity, enhanced cellular mechanisms for avoiding 
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Tamoxifen cytotoxicity, reduced cellular tamoxifen level, 
enhanced levels of antagonizing metabolites, and other 
routes have helped to understand tamoxifen resistance22.

6.  Mechanisms: Anti-Estrogen 
Resistance

Several processes have been linked to the development 
of tamoxifen resistance. However, many of the 
postulated processes have little solid evidence to back 
them up. Drugs were once thought to be responsible for 
causing metabolic changes in cells that resulted in drug 
resistance.

Tamoxifen is thought to limit tumour cell proliferation 
primarily by interacting with ER22. Recent data from 
breast cancer biopsies link tamoxifen resistance to altered 
growth factor receptor expression and downstream 
signalling cascades17. Kinases downstream of these 
receptors, such as ERK1/2, p38, AKT, and p21-activated 
kinase-1, are active consistently in nonresponsive cancers 
with de novo or acquired resistance111–115. In tamoxifen-
resistant tumors, BCAR1, AIB1, and ERα expression are 
all elevated significantly. Tamoxifen reduces estrogen-
dependent cancer cell growth by preventing G0/G1 
phase116. Interaction tamoxifen with the receptor is 
thought to result in the formation of a complex that, when 
linked with estrogen-responsive regions, stops target 
genes from being transcribed. The ensuing blockage is 
thought to be cytostatic mostly, and it can be reversed 
by adding estradiol. It is still unclear whether tamoxifen 
causes apoptosis or cell death.

Tamoxifen’s anti-estrogenic actions differ with species 
and target tissues. Rats and humans have tamoxifen 
sensitivity. Tamoxifen has estrogen-agonist effects in 
uterine tissues; however, it is an estrogen inhibitor in 
most instances117. Tamoxifen affects postmenopausal 
gonadotropin levels, plasma proteins, and vaginal 
epithelium116–118. It is not known if the variation in the 
anti-estrogenic effect is due to species or tissue-specific 
tamoxifen metabolism or different transcription factors 
that modify signal interpretation by the cell after the anti-
estrogen interacts with the ER. Numerous other factors 
would still influence the cellular response of tamoxifen.

Tamoxifen was also found to bind to non-ER 
locations119. The digestive system, uterus, ovaries, brain, 

and kidneys have the most estrogen-binding sites and Anti-
Estrogen Binding Sites (AEBS)120. The AEBS are different 
from the ER and emerge only after estradiol therapy119. 
Anti-estrogen affinity for AEBS does not appear to be 
related to the biological efficacy of anti-estrogen, which 
implies that AEBS does not mediate anti-estrogen activity 
directly121,122. Many investigations have linked AEBS 
binding to anti-estrogen-related physiological activities, 
such as protein kinase C inhibition123, calmodulin 
inhibition124, and interactions with histamine125, 
dopamine126, and muscarinic receptors127. AEBS have 
generated interest consistently, although their role in the 
antitumor efficacy of tamoxifen is uncertain.

Several studies have shown that ERβ is lost during 
carcinogenesis, which indicates that it may play a 
tumour-suppressing role128,129. When both receptors 
are expressed, ERβ has been found to reduce ERα’s 
function as a transcriptional activator while promoting 
anti-proliferative and pro-apoptotic activities128,130. 
Numerous genes controlled by ERβ, but not ERα, have 
been found; and researchers are determining whether 
these transcripts have anti-proliferative or pro-apoptotic 
features that might explain ERβ’s tumour suppressor 
function128,131,132.

7. Multidrug Resistance
Drug inactivation and inhibition are caused by various 
indigenous and foreign factors, including cellular 
reprogramming, neoplastic stimulation, drug efflux due 
to the over-expression of MDR genes, and metabolic 
changes. Changes in indigenous and external stimuli 
result in the DNA damage repair mechanism, evasion 
of programmed cell death, and epithelial−mesenchymal 
translocation133–135. The unpredictability of the acquired 
cell death evasion strategies of the cancer cells may also 
compromise immune surveillance136. Furthermore, 
the link between cancer and oxidative stress has been 
investigated thoroughly, which indicates that ROS plays 
a crucial role in cancer progression137. An imbalance in 
redox homeostasis is a key element in the development 
of cancer treatment resistance. As oxidative stress is 
important for cell survival, it may also contribute to 
cancer medication resistance138.

Single-Agent Resistance (SAR) or MDR might be 
confined to the medicine that is used to treat a patient. 
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Owing to its ability to disrupt the expected medication 
response in cancer patients, resistance to several 
treatments during cancer therapy has been a “clinician’s 
nightmare.” As a result, dealing with drug resistance in a 
cancer treatment program is difficult100,139.

8. Mechanisms of Drug Resistance
An increase in the expression of ATP-Binding Cassette 
(ABC) carrier proteins, which export substrates 
across the cell membrane through ATP hydrolysis, 
drives cancer therapy resistance140. These drug efflux 
transporters decrease the cellular concentration of the 
drug and compromise treatment responsiveness141. 
Research links 48 ABC transporters to humans142. 
Many of them protect the kidney, pancreas, liver, GI 
tract, testes, and brain endothelial arteries143. There 
are 13 ABC transporters are linked to cancer therapy 
resistance. ABCB1 (permeability glycoprotein/
MDR1)144, ABCC1 (MDR related protein-1, MRP1), 
and ABCG2/BCRP (breast cancer resistance protein) 
have been studied carefully to better understand 
multidrug resistance. ABC transporters are involved 
in the removal of xenobiotics and harmful endogenous 
chemicals from cells and organs in order to maintain 
interstitial equilibrium. These membrane-bound 
transporters are used by cancer cells to develop drug 
resistance145. Domains were constructed by utilizing 
Illustrator of Biological Sequences, and these sequences 
were acquired from Uniprot Database146,147.

In the processes of these ABC transporters, ATP plays 
a significant role. ATP levels in drug-resistant cancer cells 
are higher than in parental cancer cells148. When ATP 
levels are low, cancer cells become much more susceptible 
to treatment. Drug-sensitive cells become drug-resistant 
as their intracellular ATP concentrations increase149. 
Extracellular ATP also promotes the expression of 
ABC transporters, resulting in increased drug efflux150. 
Extracellular ATP concentrations are known to 
increase the tumour microenvironment133. With the 
help of a mechanism known as “macropinocytosis,” 
cancer cells consume this extracellular ATP. Numerous 
chemotherapeutic drugs become resistant as a result 
of the considerable increase in intracellular ATP 
concentration151. Accumulating evidence has shown the 
combination of therapies in tamoxifen-resistant cancer, 
a higher opportunity to develop MDR, and stem-like 
phenotypes in breast cancer100,139,152.

9.  Drug Resistance and 
Epigenetics

Epigenetics determines cell destiny and pathogenic 
provenience. Nongenetic heterogeneity causes tumour-
initiating cells and/or therapy resistance. Epigenetic 
changes produce inadequate gene expression, which lasts 
across cell cycles and contributes to nongenetic variation 
and resistance to treatment153.

Precision oncology benefits from epigenetic-based 
diagnostic and prognostic techniques substantially. 
Numerous genetic diagnostic tests are in clinical studies 
or usage154. Epidrugs, or drugs that target epigenetic 
modulators, were developed as a result of precision oncology 
efforts to address dysregulated epigenetic pathways155.

Epigenetic modifications govern gene transcription 
via altering chromatin packaging and regulate DNA 
accessibility to sequence-specific transcription factors. 
Genetic variation, chromatin rearrangement, histone 
modification, and non-coding RNA alterations are linked 
to cancer chemoresistance155,156 (Figure 2).

Figure 2.  Drug-sensitive cancer cells upon epigenetic 
alterations lead to histone modification, 
methylation, and mRNA modification, which lead 
to altered gene expression. These alterations in gene 
expression lead to drug target site alteration, cell 
cycle and ER receptor alteration, decreased cellular 
uptake, enhanced drug efflux, blocked apoptosis, 
and enhanced cellular repair; thereby, making the 
drug-sensitive cancer cell resistant to the drug. 
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10. Molecular Mechanism
Aberrant modification of CpG islands around gene 
promoter regions induces gene silencing during tumour 
development, as governed by molecular mechanisms157. 
DNA methylation is associated with Histone Deacetylases 
(HDACs), chromatin condensation, and gene silencing158. 
The frequency of epimutations is far larger than that of 
genetic mutations. According to the study, 61 unusual 
mutations were detected during metastasis, 15 of which 
were driver genes and the rest were altered passenger 
genes. As a result, these modifications have a smaller 
impact on sub-population selection related to tumour 
formation and medication resistance. According to the 
accumulated evidence, demethylation of the MDR1 
protagonist appears to be associated with (MDR) in a 
range of tumour types159,160. Epigenetic alterations improve 
DNA damage repair in cancer cells by reviving the DNA 
repair molecule MGMT, which enhances the survival 
of malignant cells. Cancer cells affect the sensitivity to 
modification and epigenetic suppression of proapoptotic 
genes, such as APAF1 and hMLH1, and oncogenes and 
tumour suppressor genes, such as BRCA1 and E-cadherin. 
Exosomes are also thought to have a role in epigenetic 
alterations, according to recent research161. According to 
another recent study, exosomes are considered to play a 
role in tumour growth, cell proliferation, and metastasis. 
Extracellular vesicles carry proteins and nucleic acids to 
target cells, affecting chromatin alteration, chromatin 
structure, and RNA post-transcriptional control162. 
Tumour microenvironment fibroblasts and immunocytes 
release exosomes where they transport a range of loadings 
and microRNAs (miRNAs). Exosomal miRNAs intervene 
in drug resistance mechanisms, such as medicine efflux, 
medication metabolism changes, drug target mutations, 
DNA repair, metabolic alterations, cancer stem cells, and 
epigenetic modifications163. Exosomal miRNAs promote 
resistance to medication.

11.  ERα Signaling and Epigenetics
Estradiol activates ER target sites, which recruit hundreds 
of ER co-regulators to chromatin to ensure optimum 
transcriptional and repressive activity. Even though each 
ER molecule resides on chromatin for only seconds, it 
cycles on and off for minutes and hours after estradiol 
stimulation. ER receptor coactivators such as P300/
CBP, SWI/SNF and PRMTs, are activates the epigenetic 

changes associated with them. SRC-1, SRC-2, and 
SRC-3 attach to ER physically and serve as a platform 
for ER to recruit additional stimulating kinases and 
chromatin remodelling complexes164. P300, a histone 
acetyltransferase (HAT), communicates with ER-bound 
enhancers through SRC-3 to acetylate histone H3 lysine 27 
(H3K27ac), thereby activating enhancers165,166. Estradiol 
elevates H3K27ac concentrations at loci in which the ER 
has a regulatory effect167–169. An increase in the H3K27ac 
at ER-bound enhancers corresponds with BRG1, the SWI/
SNF catalytic element, which shows that ER promotes the 
SWI/SNF complexes to redesign and activate enhancers170 
NCoR1, NCoR2, and LCoR engage with an epigenetic 
suppressor to down-regulate estradiol-repressed genes171. 
The ER corepressor BRCA1 is well-known. After 
binding to the AF2 area, BRCA1 monoubiquitinates 
the ER, thereby decreasing its transcriptional activity168. 
The transcriptional and oncogenic effects of these 
coregulators have been well-studied172–174. Estradiol-
dependent ER recruitment requires colonial transcription 
factors. Pioneer transcription factors in ER breast cancer 
have been studied169. GRHL2 shows numerous functional 
similarities to FOXA1 and GATA3, including estradiol-
independent chromatin assembly and ER target gene 
regulation170,171,175. PRC1 and PRC2 increase estradiol-
induced ER corresponding transcriptional activation 
in breast cancer cells by recruiting chromatin168,176–178. 
Polycomb complexes have also been discovered to have 
both repressive and activating effects in stem cells, 
embryonic development, and cancer cells, as well as the 
activities that take place inside these cells176. The roles of 
GRHL2 and polycomb-group proteins as ER signalling 
regulators in ER+ breast cancers require further 
investigation (Figure 3).

12.  Future Research Directions 
of Tamoxifen in Cancer 
Treatment

Tamoxifen is a potent anticancer drug that plays a vital 
role in ER-positive breast cancer patients. The main 
drawback of this drug is its drug resistance, which 
most probably limits its efficacy, thereby emphasizing 
the importance of overcoming tamoxifen resistance in 
breast cancer. The methods to overcome breast cancer 
resistance are based on the major mechanism of drug 
resistance. Mechanistic pathways are inhibited, such 
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as the RTK pathway, blocking protective autophagy, 
upregulation of ERα36, cell cycle regulators, and EMT-
like specific phenomenon. Some novel methods have 
broadened our vision to overcome the drug resistance of 
tamoxifen totally, by using combinational drug therapy 
with other drugs that can inhibit the development of 
drug resistance. In recent years, most of the research on 
the relationship among the major areas of autophagy, 
cell cycle regulators, and tamoxifen resistance has made 
great progress. Hence, these methods to overcome 
drug resistance by inducing autophagy mechanisms are 
limited most probably in the current research due to the 
inhibition of autophagy by its inhibitors.

The continued search for better autophagy inhibitors 
to overcome the resistance has thrown light to 
hypothesize that tamoxifen combined with other drugs 
may protect the mitochondrial function which in turn 
enhanced autophagy and overcome the drug resistance 
of tamoxifen. This view is a new arena to improve the 
drug resistance of tamoxifen, and more research studies 
are needed to explore a clear view in this field. The main 
target to overcome tamoxifen resistance is to target LEM4, 
which is a feasible direction for research in the future. It 
is already evident that the high expression of LEM4 in 

drug-resistant cells is an important biological mechanism 
involved in the attenuation of the inhibitory effect of 
tamoxifen on the G1–S transition. Hence, targeting 
LEM4 will play a potent role in overcoming tamoxifen 
resistance in breast cancer and will be an important tool 
in the future.

13. Conclusion
Tamoxifen treatment epigenetically altered gene 
expression associated with changes in coregulators, 
epigenetics and post-translational changes, and genetic 
variations in the ER pathway may cause endocrine 
resistance. “Epigenetic treatment,” which appears 
to be promising, could be a solution to the problem 
of medication resistance in the cancer field. HDAC 
inhibitors, for example, have shown the potential to lower 
antiestrogen-resistant cell proliferation.

Finally, new information has emerged on the possible 
routes that contribute to tamoxifen resistance. Tamoxifen-
resistant animals or patients show ER loss or alterations, 
decreased intracellular tamoxifen concentrations, and 
altered metabolite profiles, according to various scientific 
investigations. According to recent studies, breast cancer 

Figure 3.  Tamoxifen is an estrogen competitor that competes for the active site on the Estrogen Receptor (ER) and blocks 
estrogen from binding to its receptor. Tamoxifen functions as an anti-estrogen by inhibiting the co-activators that 
bind with the ER complex. Upon tamoxifen binding, transcription of the ER complex is inhibited, as a result of which 
cancer cell growth and proliferation cease. However, an increase in the number of growth factors, co-activators, and 
altered pathways lead to alterations in ER and, ultimately, led to cancer cell formation.
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cells become MDR and stem-like due to the treatment 
with tamoxifen. Research into epigenetic regulation in 
MDR and tamoxifen resistance can potentially lead to 
new cancer treatment regimens, which will improve 
patient outcomes.
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