Homology in the Binding Patterns of Human and Rat Androgen Receptors with various Ligands

Subin Balachandran¹, R. N. Binitha^{2*} and Francis Sunny³

¹Department of Zoology, Sacred Heart College (Autonomous), Thevara - 682013, Kochi, Kerala, India ²Department of Zoology, Mar Athanasius College (Autonomous), Kothamangalam - 686666, Kerala, India; binithamac@gmail.com ³Department of Zoology, Marian College of Arts and Science, Kazhakuttom, Trivandrum - 695582, Kerala, India

Abstract

Scientists routinely use *in-vivo* animal experiments to study the reproductive and endocrine effects of various chemicals in humans. Rats are being used as the most suitable animal model for such investigations. Use of animal models to envisage the mode of action of a particular chemical in humans is questionable unless we can explain the binding similarities. In this study, an *in-silico* docking was employed to visualise if androgens and their agonists bind with androgen receptors of humans and rats in a similar pattern using BIOVIA Discovery Studio 2018. Amino acid residues involved in bond formation, nature of bonding, LibDock score and bond distances were calculated to compare the binding affinities. It was found that ASN 705, GLN 711, ARG 752 and THR 877 were the major amino acid residues in hydrogen bonding of selected ligands with both human and rat androgen receptors. Thus, the present study answers numerous questions that may arise while selecting rats as laboratory animal models to validate the androgenic effects of chemicals in humans.

Keywords: Androgen Agonist, Androgen Receptors, Biovia Discovery Studio, In-Silico Docking, Laboratory Animal Models

1. Introduction

Androgen receptors (ARs) are the critical regulators of endocrine and reproductive functioning in males. They are members of the nuclear family of proteins possessing genomic and non-genomic actions¹. ARs are soluble proteins with 919 amino acids². Two isoforms of ARs (AR-A, 87kDa and AR-B, 110kDa) have been identified and characterized. The binding of endogenous androgens with AR induces conformational changes, including the hike in phosphorylation levels, homodimerization, nuclear translocation and interaction with DNA. The dimerized AR further binds with androgen response elements located at target genes and leads to cofactor recruitment, resulting in the regulation of androgendependent genes^{1,2}.

Dihydrotestosterone and testosterone are the major androgens produced in the human body¹. These endogenous androgens possess numerous therapeutic effects too. These therapeutic activities are controlled either by upregulation or by downregulation of ARs. To meet the increased demands for androgens, derivatives were synthesized from endogenous androgens. These synthetic androgens can be androgen mimics (agonists) and androgen blockers (antagonists). Agonists and antagonists were, respectively, used for upregulation and downregulation of ARs. The use and abuse of synthetic androgens remain a highly debatable topic. Agonists aid in the treatment of male hypogonadism, aplastic anaemia, protein wasting diseases associated with cancer and so on². Antagonists were developed for the treatment of prostate cancer, alopecia, hirsutism, etc. The abuse of androgen

Article Received: 11.08.2021

^{*}Author for correspondence

modulators by athletes and body builders has been widely reported^{3,4}. There are also reports on the hidden side effects including hepatotoxicity, carcinogenicity, reproductive or developmental toxicity and cardiovascular toxicity⁵.

Numerous reports on natural and synthetic compounds with androgenic/antiandrogenic potential have been published⁶⁻¹¹. Anthropogenic chemicals with androgenic activity have also been reported to interfere with the physiological activities of aquatic organisms¹². These reports created a growing concern about direct and indirect effects of compounds that bind with ARs. In order to screen the androgenic potential of chemicals, both in vivo and in vitro methods are used¹³. Hershberger's assay¹⁴ and androgen receptor binding assay¹⁵ are the most accepted protocols among them¹⁶. Ethical concerns, time consumption and financial input are the major limitations in these methodologies. This creates a huge urge for the development of a cost effective and faster methodology for investigating the agonistic and antagonistic activities of androgen receptors.

Research activities in development of newer methods for the investigation of androgenic effects of unknown chemicals are going on. Numerous in vitro, in vivo and in silico methodologies have been developed to screen androgenic potential of suspected compounds¹⁷⁻²¹. But none of these studies explained if the binding pattern of androgens with ARs of humans and experimental models are similar. Such comparative studies are relevant when we make conclusions about human effect of a compound based on animal studies. It was reported that amino acid sequences of human androgen receptors and rat androgen receptors shared an overall homology of about 85%²². But none of the reports till date has claimed that binding of a chemical with both human androgen receptors and laboratory animal androgen receptors are homologous. This could be achieved by manipulating the binding between a chemical and the corresponding biological receptor.

The present work is an investigation of homology in the binding patterns of selected androgenic compounds with ARs of rat and human. Four endogenous androgens and four androgen agonistic compounds were selected by literature survey. Discovery Studio 2018, a molecular docking software, was employed for molecular docking analysis. The LibDock score, amino acids involved in bond formation and the bond length were used for homology analysis. This is a pioneer attempt to study similarity in the binding patterns of human and rat androgen receptors. Additionally, this study also guarantees the validity of *in vivo* screening of androgenic activity of selected compounds.

2. Materials and Methods

- Molecular Docking: LibDock module of Discovery Studio 2018 was used to study the interaction between the protein and the ligand molecules. The binding sites were chosen based on PDB records for docking the ligands. The LibDock scores, nature of bonding and bond length of the docked ligands were estimated²³.
- Ligands: 3D structures of endogenous androgens and androgen agonists were downloaded from PubChem database in *.sdf* format. These ligands were prepared to generate 30 structures that included all possible conformers and tautomers. The list of ligands is presented in Table 1.
- **Receptors**: Androgen receptors that were bound with corresponding natural agonists were chosen for the purpose of docking. 3-D crystal structure of human androgen receptor (HAR) ligand binding domain in the complex with testosterone (PDBID: 2AM9)²⁴ and 3D crystal structure of rat androgen receptor (RAR) ligand binding domain complex with dihydrotes-tosterone (PDBID: 1137)²⁵ were obtained from PDB (Protein Data Bank) (https://www.rcsb.org/) in .*pdb* format. The protein structure was cleaned (water molecules and other hetero-atoms removed), prepared and minimized before docking.

3. Results

All the selected ligands (endogenous androgens and androgen agonists) exhibited binding affinities with both Human Androgen Receptors (HAR) and Rat Androgen Receptors (RAR). LibDock scores, nature of bonding of amino acids and bond length are the significant parameters which specify the binding affinities. Tables 2 and 3 show the detailed information about the results of docking. It was interesting to see that all the four endogenous androgens (androstendiol, dihydrotestosterone, epitestosterone, testosterone) and four androgen agonists (fluoxymesterone, methenolone, methyltrienolone, stanozolol) selected for docking exhibited almost similar pattern of docking. 2-D docking images of all these ligands are clearly arranged in Figures 1 and 2.

SI. No.	COMPOND NAME	CHEMICAL FORMULA	PUBCHEM ID	MOLECULAR WEIGHT	
1	ANDROSTENDIOL	C19H30O2	10634	290.447	۶Ë
2	DIHYDROTESTOSTERONE	C19H30O2	10635	290.447	ANDOGEN
3	EPITESTOSTERONE	C19H28O2	10204	288.431	NDOGENOU
4	TESTOSTERONE	C19H28O2	6013	288.431	SNOI
5	FLUOXYMESTERONE	C ₂₀ H ₂₉ FO ₃	6446	336.447	×
6	METHENOLONE	C ₂₀ H ₃₀ O ₂	3037705	302.458	AGO
7	METHYLTRIENOLONE	C19H24O2	261000	284.399	ANDROGEN
8	STANOZOLOL	C ₂₁ H ₃₂ N ₂ O	25249	328.5	72

Table 1.	List of	ligands	selected	for	docking
----------	---------	---------	----------	-----	---------

LibDock scores, nature of bonding and bond length of endogenous androgens with HAR and RAR are clearly given in Table 2. RAR bounded to Androstendiol produced 6 hydrogen bonds (ASN 705, GLN 711, ARG 752, THR 877, LEU 704) and 7 hydrophobic interactions with a LibDock score of 111.389. HAR bounded to Androstendiol produced four hydrogen bonds (ASN 705, ARG 752, THR 877, LEU 704) and eight hydrophobic interactions, with a LibDock score of 102.317. RAR bound to *dihydrotestosterone* produced three hydrogen bonds (GLN 711, ARG 752, THR 877) and seven hydrophobic interactions, with a LibDock score of 109.724. HAR bound to dihydrotestosterone produced two hydrogen bonds (ARG 752, THR 877) and seven hydrophobic interactions, with a LibDock score of 102.506. RAR bound to epitestosterone produced four hydrogen bonds (ASN 705, GLN 711, ARG 752) and nine hydrophobic interactions, with a LibDock score of 107.884. HAR bounded to epitestosterone produced 3 hydrogen bonds (ASN 705, ARG 752) and 9 hydrophobic interactions, with a LibDock score of 99.9752. RAR bound to testosterone produced three hydrogen bonds (GLN 711, ARG 752, THR 877) and eight hydrophobic interactions, with a LibDock score of 109.874. HAR bound to testosterone produced two hydrogen bonds (ARG 752, THR 877) and seven hydrophobic interactions, with a LibDock score of 102.614. 2-D images of all these ligands are clearly arranged in Figure 1.

LibDock scores, nature of bonding and bond length of androgen agonists with HAR and RAR are clearly given in Table 3. RAR bound to *fluoxymesterone* produced four hydrogen bonds (GLN 711, ARG 752, THR 877, LEU 704) and seven hydrophobic interactions, with a LibDock score of 109.874. HAR bound to fluoxymesterone produced two hydrogen bonds (ARG 752, THR 877) and six hydrophobic interactions with a LibDock score of 113.916. RAR bound to methenolone produced three hydrogen bonds (GLN 711, ARG 752, THR 877) and nine hydrophobic interactions, with a LibDock score of 108.085. HAR bounded to *methenolone* produced two hydrogen bonds (ARG 752, THR 877) and nine hydrophobic interactions, with a LibDock score of 104.417. RAR bounded to methyltrienolone produced three hydrogen bonds (GLN 711, ARG 752, THR 877) and seven hydrophobic interactions, with a LibDock score of 107.511. HAR bound to methyltrienolone produced two hydrogen bonds (ARG 752, THR 877) and five hydrophobic interactions, with a LibDock score of 101.951. RAR bound to stanozolol produced two hydrogen bonds (MET 745, THR 877) and 14 hydrophobic interactions, with a LibDock score of 115.879. HAR bound to stanozolol produced three hydrogen bonds (GLN 711, THR 877, MET 745) and 14 hydrophobic interactions with a LibDock score of 114.907. 2-D images of all these ligands are clearly arranged in Figure 2.

 Table 2.
 LibDock scores, nature of bonding and bond length of endogenous androgens with human and rat androgen receptors

COMPOUND	HUMAN ANDROGEN RECEPTOR						BONDING SCORE ydrogen Bond ydrogen Bond ydrogen Bond ydrogen Bond ydrogen Bond ydrogen Bond tydrophobic tydrophobic tydrophobic tydrophobic			
	LibDock	NATURE OF	BOND	INTERACTING	BOND	NATURE OF				
	SCORE	BONDING	DISTANCE	RESIDUES	DISTANCE		SCORE			
		Hydrogen Bond	2.06695	ARG752	2.05233					
		Hydrogen Bond	1.99632	THR877	1.86427					
		-	-	GLN711	2.05233					
ANDROSTENDIOL		-	-	GLN711	2.62213					
		Hydrogen Bond	2.67661	MET745	2.75892		111.389			
IZ.	102.317	Hydrogen Bond	4.327	LEU704	4.29526					
E.		Hydrophobic	5.28113	MET780	5.11726					
SO		Hydrophobic	4.67755	LEU873	4.5522					
DR		Hydrophobic	5.06221	LEU704	4.95481					
N		Hydrophobic	4.4216	LEU707	4.2685					
~		Hydrophobic	5.46528	MET742	5.31689	Hydrophobic				
		Hydrophobic	4.39684	MET745	4.10713	Hydrophobic				
		Hydrophobic	5.17701	PHE764	5.28065	Hydrophobic				
		Hydrophobic	5.20343	PHE764	-	-				
		-	-	GLN711	2.24901	Hydrogen Bond	109.724			
NE		Hydrogen Bond	2.12124	ARG752	2.19863	Hydrogen Bond				
02 Q		Hydrogen Bond	1.94832	THR877	1.789	Hydrogen Bond				
DIHYDROTESTERONE		Hydrophobic	4.58143	LEU704	4.36315	Hydrophobic				
S	102.506	Hydrophobic	5.15529	MET780	4.74837	Hydrophobic				
E		Hydrophobic	4.18962	LEU873	4.2456	Hydrophobic				
RC		Hydrophobic	5.33127	MET742	5.18753	Hydrophobic				
Z		Hydrophobic	5.22046	MET742	5.25078	Hydrophobic				
II		Hydrophobic	4.21534	MET745	4.1154	Hydrophobic				
		Hydrophobic	5.35755	PHE764	5.1076	Hydrophobic				
	99.9752	Hydrogen Bond	2.12283	ARG752	2.31231	Hydrogen Bond	107.884			
		Hydrogen Bond	2.36527	ASN705	2.03614	Hydrogen Bond				
		Hydrogen Bond	2.87947	ASN705	3.09305	Hydrogen Bond				
		-	-	GLN711	2.23371	Hydrogen Bond				
NE		-	-	THR877	2.63733	Hydrophobic				
EPITESTOSTERONE		Hydrophobic	5.23795	LEU704	5.06762	Hydrophobic				
E		-	-	MET780	5.45227	Hydrophobic				
SC		Hydrophobic	4.91387	LEU873	4.88424	Hydrophobic				
STO		Hydrophobic	5.44614	MET742	4.9553	Hydrophobic				
Ĕ		Hydrophobic	5.06894	MET742	4.80238	Hydrophobic				
LId		Hydrophobic	4.66239	MET742	-	-				
ш		Hydrophobic	3.7541	MET745	3.62094	Hydrophobic				
		Hydrophobic	5.40249	TRP741	5.42611	Hydrophobic				
		Hydrophobic	5.08534	TRP741	5.24123	Hydrophobic				
		Hydrophobic	5.42335	VAL746	-	-				
TESTOSTERONE	102.614	Hydrogen Bond	2.12751	ARG752	2.31878	Hydrogen Bond	109.874			
		Hydrogen Bond	1.94235	THR877	2.0607	Hydrogen Bond				
		-	-	GLN711	2.24135	Hydrogen Bond				
		Hydrophobic	4.63837	LEU704	4.95045	Hydrophobic				
				LEU704	4.91993	Hydrophobic				
		Hydrophobic	5.47901	MET780	5.29948	Hydrophobic				
		Hydrophobic	4.62599	LEU873	4.97212	Hydrophobic				
		Hydrophobic	5.35599	MET742	5.16729	Hydrophobic				
S		nyuropriobic	7.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2							
Ξ		-	-	MET742	4.78767	Hydrophobic				
		Hydrophobic Hydrophobic	4.07817 5.40423	MET745	3.69228	Hydrophobic Hydrophobic				
		HV0rophobić	5.40473	TRP741	5.20441	HVGrobhobić				

		ANDROGEN R			RAT ANDROGEN RECEPTOR				
COMPOUND	LibDock	NATURE OF	BOND	INTERACTING RESIDUES	BOND	NATURE OF	LibDoc		
	SCORE	BONDING	DISTANCE		DISTANCE	BONDING	SCORE		
FLUOXYMESTERONE	113.916	Hydrogen Bond	2.12751	ARG752	2.31878	Hydrogen Bond			
		Hydrogen Bond	1.94235	THR877	2.0607	Hydrogen Bond			
		-	-	GLN711	2.24135	Hydrogen Bond			
		Hydrophobic	4.63837	LEU704	4.95045	Hydrogen Bond	109.874		
		-	-	LEU704	4.91993	Hydrophobic			
		Hydrophobic	5.47901	MET780	5.29948	Hydrophobic			
Σ I		Hydrophobic	4.62599	LEU873	4.97212	Hydrophobic			
ĝ		Hydrophobic	5.35599	MET742	5.16729	Hydrophobic			
1 <u>5</u>		-	-	MET742	4.78767	Hydrophobic			
-		Hydrophobic	4.07817	MET745	3.69228	Hydrophobic			
		Hydrophobic	5.40423	TRP741	5.20441	Hydrophobic			
		Hydrogen Bond	2.11281	ARG752	2.06715	Hydrogen Bond			
		Hydrogen Bond	1.96878	THR877	2.1691	Hydrogen Bond			
		-	-	GLN711	2.56771	Hydrogen Bond			
Щ		Hydrophobic	4.52935	LEU704	4.35823	Hydrophobic			
ō	104.417	Hydrophobic	5.23482	MET780	5.2631	Hydrophobic	100.00		
Ы	104.417	Hydrophobic	4.12751	LEU873	3.66753	Hydrophobic	108.08		
Z I		Hydrophobic	5.43075	MET742	5.47522	Hydrophobic			
METHTNOLONE		-	-	MET742	5.23861	Hydrophobic	4		
μ		Hydrophobic	4.30786	MET745	4.15165	Hydrophobic			
2		Hydrophobic	4.21551	LEU704	3.63332	Hydrophobic			
		Hydrophobic	3.55047	LEU707	3.63331	Hydrophobic			
		Hydrophobic	5.40248	PHE764	5.15369	Hydrophobic			
		Hydrophobic	5.45147	PHE764	-	-			
	101.951	-	-	GLN711	2.43529	Hydrogen Bond	107.51		
Щ Ц		Hydrogen Bond	1.72739	ARG752	2.00845	Hydrogen Bond			
ō		Hydrogen Bond	2.01867	THR877	1.75388	Hydrogen Bond			
METHYLTRIENOLONE		Hydrophobic	4.63981	LEU704	4.33782	Hydrophobic			
N N		-	-	LEU704	5.00239	Hydrophobic			
RI		-	-	LEU704	4.96488	Hydrophobic			
L L		Hydrophobic	4.65018	LEU873	4.93379	Hydrophobic			
É		Hydrophobic	4.95729	MET742	5.0529	Hydrophobic			
<u> </u>		Hydrophobic	5.09546	TRP741	-	-			
Σ		Hydrophobic	5.12507	PHE764	4.87	Hydrophobic			
		-	-	MET780	5.20865	Hydrophobic			
		Hydrogen Bond	1.87489	THR877	1.71551	Hydrogen Bond			
		Hydrogen Bond	2.34259	MET745	1.92497	Hydrogen Bond			
		Hydrogen Bond	2.5724	GLN711	-	-			
		-	-	PHE764	5.42068	Hydrophobic			
		Hydrophobic -	5.03315	LEU704	4.908	Hydrophobic			
		-	-	MET742	5.00458	Hydrophobic			
		Hydrophobic	4.53583	LEU873	4.70281	Hydrophobic			
.	114.907	Hydrophobic	4.94746	MET780	5.181	Hydrophobic			
STANOZOLOL		-		LEU873	4.551	Hydrophobic			
		Hydrophobic	5.05634	MET742	5.49087	Hydrophobic	115.05		
		Hydrophobic	4.75317	MET742	4.49608	Hydrophobic	115.87		
		Hydrophobic	2.72614	MET745	4.22345	Hydrophobic			
		Hydrophobic	5.49922	TRP741	5.28586	Hydrophobic			
		-	-	PHE876	5.17925	Hydrophobic			
		Hydrophobic	4.75087	LEU707	5.47208	Hydrophobic			
		Hydrophobic	4.48392	MET745	4.88927	Hydrophobic			
		-	-	MET749	4.59073	Hydrophobic			
		Hydrophobic	3.94087	MET745	-	-			
		Hydrophobic	4.70628	MET745	-	-			
		Hydrophobic	5.26765	TRP741	-	-			
		Hydrophobic	5.49726	PHE764	-	-			
			STI STEV				1		

 Table 3.
 LibDock scores, nature of bonding and bond length of synthetic androgens with human and rat androgen receptors

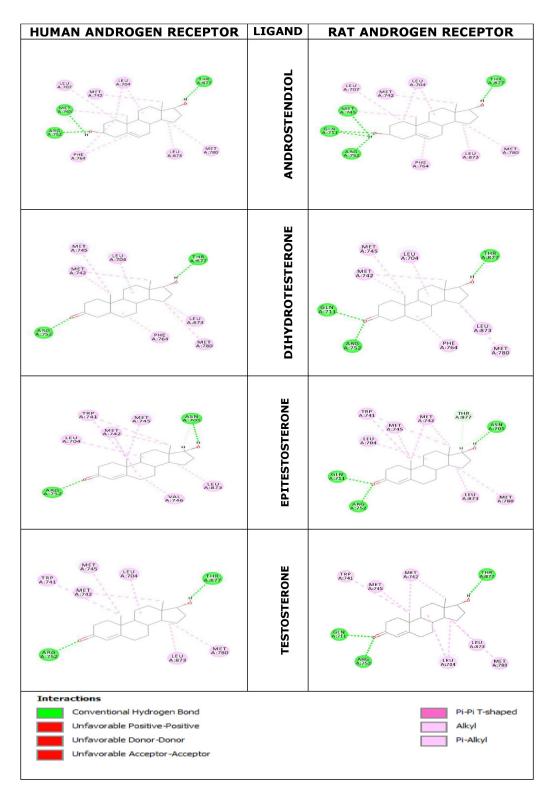


Figure 1. Two dimensional structures of binding of endogenous androgens with human androgen receptors and rat androgen receptors.

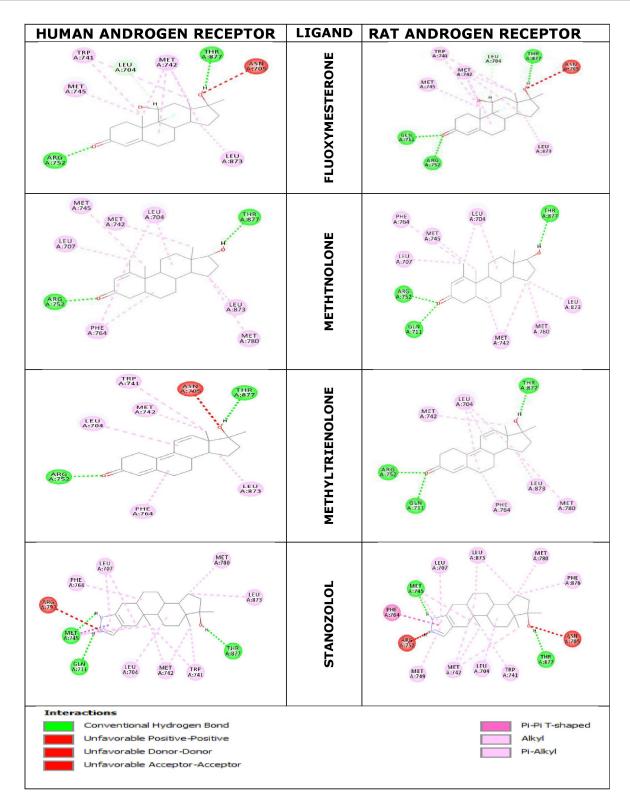


Figure 2. Two dimensional structures of binding of androgen agonists with human androgen receptors and rat androgen receptors.

4. Discussion

Several studies in animal models reported that the target genes of each AR are highly specific for the *in* vivo system. Experiments suggest that binding of ligands with AR is stabilized by the ligand-binding domain²⁶. Different types of Androgen Response Elements (ARE) regulate AR activities²⁷. Hormone-specific gene regulation is only possible due to the presence of these different mechanisms²⁸. From our results, it is evident that both HAR and RAR exhibit similar binding patterns. The amino acid residues ASN 705, GLN 711, ARG 752 and THR 877 are mainly involved in hydrogen bonding in the selected ligands for both HAR and RAR. These amino acid residues are found to be the key regulators controlling the ligand-binding domains of AR^{25,29,30,31}. Molecular docking helps to visualize that both humans and rats, these amino acid residues play crucial roles in binding ligands with AR. The crystalline structure of the HAR complexed with metribolone (R1881) revealed that ASN 705 and ARG 752 were the significant residues involved in forming hydrogen bonds with the ligand³⁰. ASN 705, GLN 711 and ARG 752 in the LBD of HAR are involved in forming hydrogen bonds with dihydrotestosterone²⁵. ASN 705 and THR 877 are involved in hydrogen bonding of 17-hydroxy group, and GLN 711 and ARG 752 are involved in hydrogen bonding of 3-keto group of testosterones with HAR²⁹. Zhou et al³² Made similar finding during screening of novel ligands for androgen receptors. Sakkiah *et al.*,³³ also reported that some of these amino acid residues were

involved in binding of antagonists towards the antagonist binding pocket of the AR.

5. Conclusion

The present study revealed that both HAR and RAR exhibited similarity in binding patterns. Since both HAR and RAR shared homology in the binding patterns, we could predict that both human and rat have similar interactions towards the same compounds. This could also enable the prediction of similar physiological effects in both species towards the same compound. We also infer that this comparative study could be used as a reference for animal studies conducted for investigating toxicology and thus provides an additional validity for the *in vivo* results.

6. Acknowledgments

Authors acknowledge the molecular docking consultancy of Dr. Achuth Sankar S and Mrs. Aswathy TR, Department of Computational Biology & Bioinformatics, University of Kerala.

7. Funding

Subin Balachandran receives Junior Research Fellowship (JRF) Ref.No.:908/ (CSIR-UGC-NET-JUNE 2018) from University Grants Commission (UGC), New Delhi, India.

8. References

- 1. Li J, Al-Azzawi F. Mechanism of androgen receptor action. Maturitas. 2009; 63(2):142-8. https://doi.org/10.1016/j. maturitas.2009.03.008. PMid:19372015.
- Gao W, Bohl CE, Dalton JT. Chemistry and Structural Biology of Androgen Receptor. Chem Rev. 2005; 105(1):3352-70. https:// doi.org/10.1021/cr020456u. PMid:16159155 PMCid:PMC2096617.
- 3. Christiansen AR, Lipshultz LI, Hotaling JM, Pastuszak AW. Selective androgen receptor modulators: The future of androgen therapy? Transl Androl Urol. 2020; 9(Suppl 2):S135-48. https://doi.org/10.21037/tau.2019.11.02. PMid:32257854 PMCid:PMC7108998.
- Zhi L, Martinborough E. Chapter 17. Selective androgen receptor modulators (SARMs). Annu Rep Med Chem. 2001; 36(10):169-80. https://doi.org/10.1016/S0065-7743(01)36057-8.
- Choi SM, Lee B. Comparative safety evaluation of selective androgen receptor modulators and anabolic androgenic steroids. Expert Opin Drug Saf. 2015; 14(11):1773-85. https://doi.org/10.1517/14740338.2015.1094052. PMid:26401842.
- Pop A, Drugan T, Gutleb AC, *et al.* Estrogenic and anti-estrogenic activity of butylparaben, butyl-ated hydroxyanisole, butylated hydroxytoluene and propyl gal-late and their binary mixtures on two estrogen responsive cell lines (T47D-Kbluc, MCF-7). J Appl Toxicol. 2018; 38(7):944-57. https://doi.org/10.1002/jat.3601. PMid:29460325.
- 7. Pop A, Drugan T, Gutleb AC, *et al.* Individual and combined in vitro (anti)androgenic effects of certain food additives and cosmetic preservatives. Toxicol In Vitro. 2016; 32:269-77. https://doi.org/10.1016/j.tiv.2016.01.012. PMid:26812027.
- 8. Hwan GK, Jeong SH, Joon HC, *et al*, Evaluation of estrogenic and androgenic activity of butylated hydroxyanisole in immature female and castrated rats. Toxicology. 2005; 213(1-2):147-56. https://doi.org/10.1016/j.tox.2005.05.027. PMid:16023279.

- Lynch C, Sakamuru S, Huang R, *et al.* Identifying environmental chemicals as agonists of the androgen receptor by using a quantitative high-throughput screening platform. Toxicology. 2017; 385:48-58. https://doi.org/10.1016/j.tox.2017.05.001. PMid:28478275 PMCid: PMC6135100.
- 10. Schrader TJ, Cooke GM. Examination of selected food additives and organochlorine food contaminants for androgenic activity in vitro. Toxicol Sci. 2000; 53(2):278-88. https://doi.org/10.1093/toxsci/53.2.278. PMid:10696776.
- 11. Orton F, Ermler S, Kugathas S, *et al.* Mixture effects at very low doses with combinations of anti-androgenic pesticides, antioxidants, industrial pollutant and chemicals used in personal care products. Toxicol Appl Pharmacol. 2014; 278(3):201-8. https://doi. org/10.1016/j.taap.2013.09.008. PMid:24055644.
- 12. Parks LG, Lambright CS, Orlando EF, *et al.* Masculinization of female mosquitofish in kraft mill effluent- contaminated Fenholloway River water is associated with androgen receptor agonist activity. Toxicol Sci. 2001; 267(62):257-67. https://doi. org/10.1093/toxsci/62.2.257. PMid:11452138.
- 13. OECD. OECD Series on Testing and Assessment. OECD Publishing. 2018. https://doi.org/10.1787/9789264304796- en.
- Owens JW, Gray LE, Zeiger E, et al. The OECD Program to Validate the Rat Hershberger Bioassay to Screen Compounds for in Vivo Androgen and Antiandrogen Responses: Phase 2 Dose-Response Studies. Environ Health Perspect. 2007; 115(5):671-8. https://doi.org/10.1289/ehp.9666. PMid:17520051 PMCid:PMC1867976.
- 15. Freyberger A, Ahr HJ. Development and standardization of a simple binding assay for the detection of compounds with affinity for the androgen receptor. Toxicology. 2004; 195(2-3):113-26. https://doi.org/10.1016/j.tox.2003.09.008. PMid:14751668.
- 16. Yamasaki K, Sawaki M, Noda S, *et al.* Comparison of the Hershberger assay and androgen receptor binding assay of twelve chemicals. Toxicology. 2004; 195(2-3):177-86. https://doi.org/10.1016/j.tox.2003.09.012. PMid:14751673.
- 17. Mansouri K, Kleinstreuer N, Abdelaziz AM, *et al.* CoMPARA: Collaborative modeling project for androgen receptor activity. Environ Health Perspect. 2020; 128(2):27002. https://doi.org/10.1289/EHP5580. PMid:32074470 PMCid:PMC7064318.
- Kleinstreuer NC, Ceger P, Watt ED, *et al.* Development and Validation of a Computational Model for Androgen Receptor Activity. Chem Res Toxicol. 2017; 30(4):946-64. https://doi.org/10.1021/acs.chemrestox.6b00347. PMid:27933809 PMCid:PMC5396026.
- Maria Maddalena Calabretta, Antonia Lopreside Laura Montali LC, Roda A, Michelini and E. A Genetically Encoded Bioluminescence Intracellular Nanosensor for Androgen Receptor Activation Monitoring in 3D cell Models. Sensors (Basel). 2021; 21(3):893. https://doi.org/10.3390/s21030893. PMid:33572727 PMCid:PMC7865915.
- 20. Kiani NA, Shang MM, Zenil H, Tegner J. Predictive systems toxicology. Methods Mol Biol. 2018; 1800:535-57. https://doi. org/10.1007/978-1-4939-7899-1_25. PMid:29934910.
- 21. Yu M, Lee J, Lee Y, Na D. 2-D chemical structure image-based in silico model to predict agonist activity for androgen receptor. BMC Bioinformatics. 2020; 21(Suppl 5):1-8. https://doi.org/10.1186/s12859-020-03588-1. PMid: 33106158 PMCid:PMC7586653.
- 22. Lubahn DB, Joseph DR, Sar M, *et al.* The human androgen receptor: Complementary deoxyribonucleic acid cloning, sequence analysis and gene expression in prostate. Mol Endocrinol. 1988; 2(12):1265-75. https://doi.org/10.1210/mend-2-12-1265. PMid:3216866.
- 23. Yang L, Li W, Zhao Y, Zhong S, *et al.* Computational Study of Novel Natural Inhibitors Targeting O6-Methylguanine-DNA Methyltransferase. World Neurosurg. 2019; 130:e294-e306. https://doi.org/10.1016/j.wneu.2019.05.264. PMid:31203065.
- 24. Habib H, Haider MR, Sharma S, *et al.* Molecular interactions of vinclozolin metabolites with human estrogen receptors 1GWR-α and 1QKM and androgen receptor 2AM9-β: Implication for endocrine disruption. Toxicol Mech Methods. 2020; 30(5):370-07. https://doi.org/10.1080/15376516.2020.1747123. PMid:32208804.
- Sack JS, Kish KF, Wang C, *et al.* Crystallographic structures of the ligand-binding domains of the androgen receptor and its T877A mutant complexed with the natural agonist dihydrotestosterone. Proc Natl Acad Sci USA. 2001; 98(9):4904-09. https://doi. org/10.1073/pnas.081565498. PMid:11320241 PMCid:PMC33136.
- 26. Farla P, Hersmus R, Geverts B, *et al.* The androgen receptor ligand-binding domain stabilizes DNA binding in living cells. J Struct Biol. 2004; 147(1):50-61. https://doi.org/10.1016/j.jsb.2004.01.002. PMid:15109605.
- 27. Schauwaers K, De Gendt K, Saunders PTK, *et al.* Loss of androgen receptor binding to selective androgen response elements causes a reproductive phenotype in a knockin mouse model. Proc Natl Acad Sci USA. 2007; 104(12):4961-6. https://doi.org/10.1073/pnas.0610814104. PMid:17360365 PMCid:PMC1829247.
- 28. Claessens F, Verrijdt G, Schoenmakers E, *et al.* Selective DNA binding by the androgen receptor as a mechanism for hormone-specific gene regulation. J Steroid Biochem Mol Biol. 2001; 76(1-5):23-30. https://doi.org/10.1016/S0960-0760(00)00154-0.
- 29. Marhefka CA, Moore BM, Bishop TC, *et al.* Homology modeling using multiple molecular dynamics simulations and docking studies of the human androgen receptor ligand binding domain bound to testosterone and nonsteroidal ligands. J Med Chem. 2001; 44(11):1729-40. https://doi.org/10.1021/jm0005353. PMid:11356108.

- Matias PM, Donner P, Coelho R, *et al.* Structural evidence for ligand specificity in the binding domain of the human androgen receptor: Implications for pathogenic gene mutations. J Biol Chem. 2000; 275(34):26164-71. https://doi.org/10.1074/jbc. M004571200. PMid:10840043.
- 31. Weikum ER, Liu X, Ortlund EA. The nuclear receptor superfamily: A structural perspective. Protein Sci. 2018; 27(11):1876-92. https://doi.org/10.1002/pro.3496. PMid:30109749 PMCid:PMC6201731.
- 32. Zhou W, Duan M, Fu W, *et al.* Discovery of novel androgen receptor ligands by structure-based virtual screening and bioassays. Genomics, Proteomics and Bioinformatics. The Authors; 2018; 16(6):416-427. https://doi.org/10.1016/j.gpb.2018.03.007. PMid:30639122 PMCid:PMC6411960.
- 33. Sakkiah S, Kusko R, Pan B, *et al.* Structural changes due to antagonist binding in ligand binding pocket of androgen receptor elucidated through molecular dynamics simulations. Front Pharmacol. 2018; 9:492. https://doi.org/10.3389/fphar.2018.00492. PMid:29867496 PMCid:PMC5962723.