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Abstract
Parkinson’s Disease (PD), a multifactorial movement disorder, is neuropathologically characterized by age-dependent 
neurodegeneration of the dopaminergic neurons in Substantia nigra. In PD patients, the hypothalamic dysfunction results 
in disruption of pituitary hormone secretion. Several genetic mutations contribute to the pathogenesis and advancement 
of PD. Among them, synaptic protein mutations play a critical role. The treatment of PD, using L-Dopa and other classes of 
drugs such as dopamine agonists, monoamine oxidase inhibitors, and anticholinergic agents, provides only symptomatic 
relief. Long-term use of these drugs produces side effects and adds to oxidative stress by producing more free radicals, 
which contribute to disease progression. Synaptic reconstruction and neurite regeneration are the critical steps for the 
retrieval of normal brain function. So, the therapeutic approach for discovering new effective neuroprotective agents that 
would enable neurite regeneration and establishing functional synapses is vital. Recently, emphasis has been given to 
the herbal medicines and their bioactive ingredients to develop alternative therapies to PD, which could provide efficient 
neuroprotective support to existing drugs.  Withania somnifera root extract, containing steroidal alkaloids and steroidal 
lactones, has shown excellent potential in PD treatment. Even though Withania somnifera offers nigrostriatal dopaminergic 
neuroprotection by modulating oxidative stress and apoptotic machinery, the exact mechanism of neuroprotection is yet 
to be elucidated. Withanolide A, one of the active compounds in Withania somnifera, facilitated the neurite outgrowth 
and reconstruction of synapses in PD models. Additionally, this plant extract appears to alleviate endocrine-associated 
modifications in PD patients. This review summarizes the major findings on the use of Withania somnifera and its 
biochemical influences in neuroprotection, regulating endocrine function and maintenance of synaptic integrity of neurons.
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1. Introduction
Parkinson’s Disease (PD), the second most common 
progressive neurodegenerative disease, is a chronic, 
progressive neurological movement disorder 
characterized by involuntary tremulous action, rigidity 
and co-ordination difficulties. PD involves the selective 
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degeneration of dopaminergic neurons of Substantia 
nigra, an area influencing all involuntary movements1. 
Pathologically, PD is identified by the presence of  
aggregates known as Lewy bodies comprised of 
α-synuclein, parkin, ubiquitin and neurofilaments2. 
Understanding the fundamental mechanisms underlying 
the development and progression of PD pathology 
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is significant for the development of neuroprotective 
therapies. The exact cause for PD is unknown; still, 
it could be due to a combination of genetic and 
environmental factors. Approximately 95% of PD is not 
linked with genetics, and is referred as sporadic PD. 
But in some forms of PD mutations in genes encoding 
α-synuclein (PARK 1), parkin (PARK 2), UCHL-1 (PARK 
5), PINK 1 (PARK 6), DJ-1 (PARK 7), LRRK2 (PARK 8) 
and ATP13A2 (PARK 9) have been reported, and these 
are referred to as familial PD3.

The neuronal communication, mediated through 
the regulated calcium-dependent exocytosis of synaptic 
vesicles at the presynaptic active zones of nerve terminals, 
is essential for synapse modulation4. A variety of synaptic 
proteins regulates synaptic functions. Alteration in 
synaptic proteins in various model organisms has 
provided evidence for their critical roles in synaptic 
function including regulation of neurotransmission5. 

Synaptic proteins also play an essential role in maintaining 
the structure and organization of synapse, exocytosis, and 
endocytosis. The variations in the expression pattern of 
these synaptic proteins can modify neuronal functions6. 
Synaptic transmission necessitates the proper targeting 
of proteins to the synaptic vesicles and the assembly of 
synaptic terminals7. This review focuses on the synaptic 
dysfunction in Parkinson’s disease, and treatment options 
based on the extract of Withania somnifera to maintain 
synaptic integrity and alleviate associated anterior 
pituitary endocrine dysfunction.

2. Relation between PD and 
Synaptic Dysfunction
The association between the synaptic protein homeostasis 
and the development of PD has been elucidated8. There 
is evidence to the effect that most of the PD-associated 
gene mutations are related with proteins that control 
the synaptic function9. Among the PD cases, 5-10% are 
accounted by the monogenic familial mutations of the 
genes regulating synaptic function and protein turnover. 
Knockdown or over expression studies of these “PD genes” 
have been shown to alter synaptic dysfunction, and defects 
in protein turnover8. The experimental Parkinsonism with 
substantial dopaminergic neuron loss has shown cellular 
and synaptic modifications in the striatum, which further 
contribute to the clinical characteristics of PD10. There 
are evidences for synaptic dysfunctions in PD ahead of 

the dopaminergic neuronal loss, including DA synaptic 
terminal degenerations8. Studies on post-mortem samples 
of PD patients show that synaptic dysfunction happens 
much before neuronal death11.

The dopaminergic neurons in the  Substantia 
nigra  region of the brain, one of the most affected in 
PD, are highly branched and form excessive synaptic 
connections, compared to the dopaminergic neurons in 
the Ventral Tegmental Area (VTA- a region less affected 
by PD) which forms lesser number of synapses. Higher 
synaptic density and vulnerability to neurodegeneration 
indicate additional parameters for neuronal degeneration8. 
Deciphering the molecular mechanisms at the synapses 
could provide a critical understanding of their role in 
neurodegeneration12.

3. Presynaptic Players Involved in 
PD
The presynaptic terminal has functional and structural 
elements to allow morphological and physiological 
alterations during the disease onset and contribute to 
further progression of the disease. These alterations include 
the synaptic protein and synaptic vesicle depletion, and 
neurotransmission defects. The critical genes involved in 
presynaptic dysfunction include α-synuclein and LRRK2, 
two autosomal dominant genes, and Parkin, PINK-1 and 
DJ-1, three autosomal recessive genes. The α-synuclein, 
a 140 amino acid protein on the synaptic vesicle, is 
linked with synaptic vesicle trafficking, SNARE complex 
formation, and maintaining the dopamine level11,13. 
The neurons lacking α-synuclein result in reduction of 
undocked synaptic vesicles, while the docked synaptic 
vesicle level remain unaltered14,15. Knockout of α-synuclein 
results in increased level of induced dopamine release 
indicating that the α-synuclein functions as a negative 
regulator of dopamine neurotransmission16.

A series of studies have revealed the critical role of 
α-synuclein in synaptic neurotransmission, which is 
essential for maintaining the neurotransmitter dopamine 
level in the synapses. The α-synuclein over-expression 
leads to a decrease in the synaptic vesicle recycling 
pool, ultimately affecting the neurotransmission17. 
The impairment of α-synuclein leads to dopamine 
accumulation, which converts into highly reactive 
toxic moieties inducing synaptic degeneration18. The 
abnormal aggregates of α-synuclein results in Lewy body 
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formation and aggrevate the PD symptoms. Typically, 
the α-synuclein remains in an equilibrium of monomers 
and α-helically folded tetramers which have less tendency 
for the formation of aggregates19, while under PD 
conditions, the ratio of tetramer and monomer declines 
and the unfolded monomers tend to aggregate leading 
to the formation of β-sheet structures of oligomers, and 
insoluble fibrils resulting in Lewy bodies20.

Another significant role player in PD is LRRK2 
(Leucine-rich repeat Kinase 2), a multidomain protein 
having kinase, GTPase, and protein-protein interaction 
domains with structural and functional regulatory roles 
at synapses21. Genomic studies in PD patients have 
revealed a direct link between LRRK2 mutation and onset 
of the disease; in transgenic animals, LRRK 2 mutation 
has shown a deficiency in striatal dopamine release 
and dopamine uptake22. LRRK2 regulates the synaptic 
vesicle endocytosis and SNARE complex disassembly by 
phosphorylating endophilin and NSF (N-ethylmaleimide 
sensitive factor). The association of LRRK2 with various 
cytoskeletal elements and presynaptic proteins bring 
strong evidence that synaptic dysfunction could occur 
due to variations in LRRK2 protein21,23,24. The functional 
inactivity of Parkin, an E3 ubiquitin ligase, is associated 
with the onset of juvenile PD25. The loss of function of the 
Parkin gene resulted in impaired neurotransmission by 
the deprivation of synaptic proteins, reduced dopamine 
release, and weakened synaptic plasticity26. 

PINK-1 (PTEN-induced putative kinase 1), a 
mitochondrial regulator that phosphorylates Parkin 
and Ubiquitin, is a strong candidate for early onset 
familial PD27. PINK-1 mutation leads to mitochondrial 
abnormalities, diminished dopamine release, and 
defective neurotransmission28. Yet another significant 
candidate, DJ-1, a redox-sensitive molecular chaperon, 
contributes to autosomal recessive early-onset PD29. 
The loss of DJ-1 results in mitochondrial dysfunction, 
reduced mitochondrial complex I activity, and disrupted 
mitochondrial homeostasis30. The association between 
α-synuclein, LRRK2, Parkin, PINK1, and DJ-1 regulates 
the dopamine release pathways and plays a crucial 
role in the onset of PD pathology10. Molecules that can 
stabilize the functioning of these proteins and regulate the 
dopamine level are thus the ideal choice for PD therapy.

4. PD Treatment
Currently, there  is no cure for PD. Levodopa (L-Dopa), 
the direct biosynthetic precursor of dopamine, is the 

standard treatment to alleviate the clinical symptoms. 
L-Dopa is generally administered along with a peripheral 
decarboxylase inhibitor, carbidopa, to prevent peripheral 
conversion to dopamine, thus stabilizing the availability 
of dopamine and reducing the peripheral side effects31. 
Though L-Dopa generates remarkable improvement in 
elevating PD-associated symptoms, long-term treatment 
using L-Dopa is less efficient and more likely to produce 
side effects32. These changes occur because L-DOPA 
dosing results in the oxidative load by forming free 
radicals during its metabolism and progression of the 
disease31. Various other drugs such as dopamine agonists, 
Mono-Amine Oxidase (MAO) inhibitors, catechol-O-
methyltransferase inhibitors, and anticholinergic agents 
also could be used in the symptomatic treatment of 
PD33. Still, none of these drugs can prevent progression 
of the disease. Besides, these drugs show significant 
side effects on continuous use. Therefore, it is essential 
to bring up new therapeutic agents that will reduce the 
neurodegeneration of PD34.

Protecting the neuronal connectomes in areas prone 
to degeneration, and thus allowing the normal brain 
function, would be the appropriate first step towards the 
PD treatment. Exploring the bioactive compounds of 
plant origin that would protect the synapse function is 
one of the strategies explored35. The antioxidants are the 
key therapeutic agents used to repair the damage caused 
by free radicals in PD35. Therefore, the antioxidant-rich 
natural products have been used as adjuvant therapy 
and conventional treatment to reduce the dosage of 
dopaminergic drugs to reduce the adverse effects due to 
prolonged use of dopaminergic agents36. The search for 
novel drug candidates for PD with fewer side effects has 
been ended with natural products, such as medicinal herbs, 
plant extracts, secondary metabolites, phytochemicals, and 
active ingredients from lower organisms37. These natural 
products are reported to have great potential as therapeutics 
with neuroprotective activity, particularly in PD models.

Ayurveda, the ancient system of Indian medicine, 
has identified a variety of plants having antioxidant 
activities that could be therapeutically used for curing 
neurodegenerative diseases. For example, extracts 
prepared from Bacopa monniera had proved to improve 
human cognitive function and have an antioxidative 
function38. An extract from  Ginkgo biloba  is reported 
to reduce free radical levels39. Several more plants offer 
scope to be examined for their potential neuroprotective 
properties40. Among them,  Withania somnifoera  offers 
the most potential application in PD treatment. 
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5. Withania somnifera (Ws) 
Alleviates PD
Withania somnifera  (L.) Dunal, popularly known as 
‘Ashwagandha’ in Sanskrit and ‘Indian Winter Cherry’ 
in English, is a medicinal herb extensively used in 
Ayurveda. This plant belongs to the Solanaceae family. 
Even though root is most used part of the plant in 
Ayurvedic preparations, the leaves and stem also have 
shown pharmacological activities. Ws has stress-relieving 
properties equivalent to depression and anxiety drugs41. 
It has powerful antioxidant properties to scavenge and 
destroy the free radicals produced during aging and in 
many disease states42. This plant extract is prescribed in 
Ayurveda for treating neurodegenerative diseases such as 
AD and PD. The neuroprotective effects of the root extract 
of Ws in various PD animal models and the mechanisms 
of action have been studied43-45.

The neuroprotective nature of  Ws  is mainly 
contributed by its capacity to enhance the dopamine and 
tyrosine hydroxylase levels and its ability to intensify 
the antioxidant potential44. Studies conducted on the 
MPTP-treated mice, a Parkinson’s disease model, showed 
that Ws root extract could be used as a promising drug 
in reducing catecholamine levels, oxidative damage, 
and physiological aberrations observed in the PD45. 

The root extracts of Withania somnifera have shown to 
protect SH-SY5Y cells from MPP+-associated toxicity 
(Sukumaran et al., unpublished data).

The administration of methanol extract of Ws rescued 
the progression and abrogated the symptoms associated 
with PD in LRRK2 mutants of Drosophila46. Ws influences 
many neurotransmitter receptors in CNS and has fewer 
adverse side effects. Even though  Ws  is a traditional 
medicine offering several health benefits, the mechanisms 

of action are not well understood. The beneficial effects 
of Ws could be attributed to the presence of two groups 
of compounds namely, steroidal alkaloids and steroidal 
lactones47. The steroidal lactones comprise a group of 
components called with anolides. In Ws, 12 alkaloids and 
35 with anolides are reported, among which Withaferin 
A, Withanolide A, and Withanolide D are known 
for their pharmacological effects48,49. The  Ws  extract, 
with so many active alkaloids, steroidal lactones, and 
saponins, has significant antioxidant properties to 
rescue the neurons43. The chemical constituents (Figure 
1) and pharmacological properties of Ws extracts have 
been extensively reviewed47. The foremost challenge in 
treating the neurodegenerative diseases with the possible 
therapeutics includes the incapacity to cross the Blood-
Brain-Barrier (BBB). Withaferin A, with a molecular 
weight lesser than 500 Da, the lipophilic structure and its 
suitable blood/brain protein coefficient, has the potential 
to penetrate the BBB50. Studies on animal models and 
clinical trials have ascertained its use through both oral 
and intraperitoneal administrations51,52. Thus Withaferin 
A is postulated as a potential drug candidate in treating 
PD. 

6. Synaptic Reconstruction by Ws
In PD treatment, the utmost essential requirement is the 
functional recovery of the affected brain areas. Therefore, 
the compounds that could protect the neuronal 
connectome and the synapses are the best choice for 
the treatment. Various studies have demonstrated the 
efficiency of Ws extracts in neurite growth. For example, 
the methanol extract of the plant has been shown to 
enhance the dendritic extension in neurons53 and in 
human neuroblastoma SH-SY5Y cells54. Withanolide A,  

Figure 1. Chemical structure of Withanolide A, Withanolide D, Withaferin A and CR-777. 
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a key component of Ws, has been shown to enhance the 
outgrowth of axons of the cortical neurons55. Studies 
have shown that the Withanolide A acts to regenerate the 
dendrites and axons and reconstruct the pre-and post-
synaptic organization of the degenerated neurons56.

The level of Semaphorin 3A (SEMA 3A), an axonal 
chemorepellent, was found to be elevated during 
neuronal damage57. The treatment with  Ws  extract 
could reduce SEMA 3A, thus overcoming its effect 
on preventing neuronal regeneration by enhancing 
synapse formation58. The fungus  Beauveria bassiana   
bio-convers  Ws  extract into the compound CR-777, 

a cysteine and glutathione derivative of Withaferin A  
(Figure 1), protecting the cells from α-synuclein 
aggregation, one of the pathological hallmarks of 
PD59. The  action of Ws  extract on neuroblastoma cells 
encouraged the association of autophagy and proteasomal 
pathways to function together to get rid of the α-synuclein 
clusters60. Recent studies have revealed that the i-extract 
of Ws has neuroprotective and neurotrophic properties by 
restoring the dendritic growth and rebuilding neuronal 
networks61. The postulated neuroprotective role of Ws is 
summarized in Figure 2.

Figure 2. The neuroprotective roles of Withania somnifera extract (highlighted in blue) and its 
metabolites (highlighted in green).
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7. PD and Hormonal Integration
Many symptoms and pathophysiology of PD affect 
the basal physiological mechanisms associated with 
hormonal integration.  The pathological and biochemical 
studies have revealed that the PD patients show symptoms 
of hypothalamic dysfunction, followed by disturbances 
at the peripheral enteroendocrine cells producing 
neuropeptides62,63. In untreated PD patients unaltered 
levels of prolactin, Thyroid-Stimulating Hormone (TSH), 
Luteinizing Hormone (LH), Follicle-Stimulating Hormone 
(FSH), Growth Hormone (GH) and Insulin-like Growth 
Factor (IGF-1) were observed while the dopaminergic 
treatment resulted in the deviations in the pituitary and 
somatotrophic system especially hypoprolactinemia 
and elevated GH secretion64. PD patients have shown 
testicular dysfunction, which subsequently led to a lower 
level of Hypothalamic-Pituitary-Gonadal (HPG) axis 
hormones especially LH, FSH and testosterone65-67. The 
decreased level of testosterone could result in depression, 
erectile dysfunction and low sperm count. In PD patients 
the overwhelming rise of dopaminergic metabolizing 
enzymes could have impact on the secretion of HPG axis 
hormones68. In addition, the anterior pituitary endocrine 
dysfunction is also prevalent in PD patients69.

The postmenopausal women with PD have been 
reported to have an altered hypothalamic dopaminergic 
system which regulates LH secretion70,71. The dopamine 
receptor stimulator, bromocriptine, has been shown to have 
undesirable effect in regulating pituitary hormone secretion 
in PD patients72. Some of the neuroendocrine anomalies that 
are associated with PD consist of disturbance in melatonin 
secretion, instabilities of glucose metabolism and insulin 
resistance. The PD patients have shown glucose intolerance 
up to a level of 80%, revealing a strong association of PD with 
type 2 diabetes mellitus (T2DM)73. The PD phenotypes like 
postural instability, gait difficulties, cognitive impairment 
and disease progression are more related with T2DM as the 
dopaminergic therapies did not improve the axial motor 
symptoms and cognitive impairment74. Deciphering the 
complexity of neuroendocrine interactions during the 
disease progress could have vital implications on diagnosis 
and therapeutic approaches62.

8. Effect of Ws on Hormonal 
Regulation
A majority of the endocrine-associated alterations in PD, 
discussed above, could be regulated by Ws. Age-related 

decrease of testosterone can enhance the susceptibility to 
PD. Strong experimental evidence has established the role of 
Ws on the endocrine system by increasing the level of serum 
testosterone and LH75,76. Ws extracts improved the levels 
of testosterone and LH in studies conducted with opioid-
addicted adult male rats77, and enhanced the balance between 
LH and FSH in infertile men75,78. Studies using the water 
extract of Ws on immortalized rat hypothalamic GnV-3 cell 
line revealed that it would upregulate the Gonadotropin-
Releasing Hormone (GnRH)79. The anxiolytic property of 
Ws is attributed to its controlling effect on the HPA axis 
and thus increasing the testosterone level80. Experiments 
on diabetic male rats revealed the regulatory effect of Ws 
extract on the levels of gonadal hormones, particularly 
progesterone81,82. Ws has been shown to have a protective 
effect on T2DM by normalizing hyperglycemia through 
improving insulin sensitivity in fructose-fed rats83 and in 
Non-Insulin-Dependent Diabetes Mellitus (NIDDM) rats84. 
These data suggest that the overall pharmacological benefit 
of Ws in PD patients could be two-sided, both at neuronal 
and endocrine.

9. Future Directions
In spite of the prevalent studies on the use of Ws extracts 
in neurodegenerative diseases, there is a need for more 
in-depth research to explicate the definite mechanism of its 
action. Further phytochemical studies have to be performed 
to purify the secondary metabolites that are responsible for 
the potential therapeutic properties and develop commercial 
formulations. The pharmacological activities, therapeutic 
effect and mode of action of the metabolites in the various 
parts of Ws plant need additional evaluation for the clinical 
use. The potential therapeutic target and the pathways that 
could be affected by the bioactive metabolites in Ws need 
to be elucidated. Even though the neuroprotective effect of 
the bioactive compounds in treating PD without side effects 
is known for long, the ability of such compounds to cross 
the blood-brain-barrier needs to be extensively studied. 
More systematic studies on these plant extracts and their 
active ingredients aiming at regulation of nerve cells and the 
endocrine system will provide a much-needed novel drug 
discovery platform for PD. 
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