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Abstract
Matrix metalloproteinases 2 and 9 (MMP2 and MMP9) are involved in the extracellular matrix (ECM) remodeling. We tested 
the short-term in vitro action of inhibitors of MMP2 and MMP9 on P-type ion transporter function in organ explants of 
climbing perch (Anabas testudineus) to understand how these ECM remodeling components influence the ion transporter 
function in the osmoregulatory epithelia of fish. Graded doses (10-8, 10-7 and 10-6 M) of inhibitors of MMP2 and MMP9 
were administered in vitro to explants of gills, kidney and intestine, kept for either 15 or 30 min and the activities of P-type 
ATPase such as Na+/K+-ATPase (NKA), H+/K+-ATPase (HKA) and plasma membrane Ca2+-ATPase (PMCA) were quantified. 
We found that the inhibitors of MMP2 and MMP9 produced dose- and time-dependent modulation in the activities of NKA, 
HKA and PMCA in the tested tissue explants. Incubation of MMP2 and 9 inhibitors at the highest dose (10-6 M) for 15 and 30 
min produced substantial rise in NKA activity. Likewise, HKA activity that showed significant rise after incubation of 10-7 
and 10-8 M inhibitors in gills and kidney explants, decreased at the lowest dose (10-8 M) of inhibitors. The lower doses of 
both inhibitors, while increasing PMCA activity in kidney and intestinal explants inhibited its activity in gill explant. These 
differential tissue-responsive actions of MMP2 and MMP9 inhibitors indicate that these ECM remodeling components can 
modify the function of the membrane-bound P-type ion transporters in the osmoregulatory tissues of fish.

1.  Introduction
Extracellular matrix (ECM) components that are secreted 
by the cells form a complex network and mediate bio-
logical processes during tissue formation and function 
particularly in remodeling processes to establish physi-
ological homeostasis[1,2]. Numerous biochemical and 
mechanical interactions operate during ECM-cell com-
munication where many components, including integrin- 
and discoidin receptors, are involved in the regulation 
of migration, differentiation and proliferation of cells  
during normal development and also in pathological  

conditions[3.1]. The ECM components maintain tissue 
integrity via heterogeneous protein components and 
undergo changes in response to cellular stimuli, and these 
changes range from dynamic homeostasis to remodel-
ing[4]. For example, the major macromolecules in the 
ECM such as proteoglycans maintain cell-matrix dynam-
ics and the collagen, elastins, laminins and fibronectins 
as the fibrous proteins maintain tissue integrity[5,6]. These 
networks of macromolecules present in the ECM help 
to resist several stresses through continuous remodel-
ing, and it is important for normal functioning of all tis-
sues[7]. ECM carries out several regulatory and instructive 
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roles on cellular behavior by providing a dynamic cellular 
micro-environment for cells[8].

Dynamic remodeling of ECM that maintains normal 
physiological homeostasis implies its synthesis and deposi-
tion due to proteolytic degradation of its own components[5]. 
Several proteolytic enzymes are involved in the degradation 
of ECM components, most notably matrix metalloprotein-
ases (MMPs) that cleave the peptide bonds of ECM compo-
nent proteins and provide tissue homeostasis[9]. MMPs are 
zinc-binding endopeptidases coming under metazins fam-
ily and have the capacity for degrading the ECM proteins 
and basement membranes[10,11]. Among MMPs, a subgroup 
called gelatinases that include MMP2 (Gelatinase A) and 
MMP9 (Gelatinase B) have gained considerable focus due 
to their involvement in degrading collagen IV present in the 
basement membrane and facilitate normal and pathological 
remodeling[12-14]. MMP2 and MMP9 are mainly produced 
by the inflammatory cells including neutrophils, macro-
phages and endothelial cells[15,16,12].

In fresh water teleost fish, the major osmoregula-
tory organs, that include gills, kidney and intestine, 
play important roles in ionoregulation accomplished by 
the dynamic modulation of ion-transport proteins[17,18]. 
These osmoregulatory organs of fish are rich in vari-
ous ion pumps that include Na+/K+-ATPase (NKA),  
H+/K+-ATPase (HKA) and plasma membrane Ca2+-
ATPase (PMCA) for maintaining proper hydromineral 
and ion homeostasis[18-21]. The P-type ATPase family 
members have a common kinetic mechanism where the 
active transport of specific ions operates across the baso-
lateral plasma membrane through ion-activated ATP 
hydrolysis[22,23]. NKA and HKA ion pumps are homolo-
gous which maintain ionic-balances via transporting 
sodium ions and protons and are driven by ATP hydroly-
sis to carry out numerous cellular functions[24,25]. Likewise, 
PMCA that transports plasma membrane Ca2+ ions from 
the cells and become a fine-tuner of cytosolic Ca2+ level, 
is important for carrying out several Ca2+-dependent cel-
lular functions especially cell signaling and apoptosis[26,27]. 
Studies revealed that PMCA regulates the Ca2+ ion con-
centration in microdomains of cells and the pump modu-
lates its activity, along with low affinity and high capacity 
Ca2+ exchanger (NCX), and transduces the Ca2+ message 
to cells to carry out cellular functions[28].

Ion pumps in osmoregulatory epithelia maintain  
ion gradients across the basolateral plasma membrane 
and provide driving force for cellular and systemic  
ionoregulation. On the other hand, remodeling of ECM 

matrix is necessary for normal physiological processes 
such as development, maintenance of homeostasis and 
tissue repair in fish[29]. Several studies have shown spe-
cial functions of gelatinases (MMP2 and MMP9) in 
fishes including degradation of ECM in muscle tissue 
and inflammation of immune response[31-37]. However, 
little information on the role of MMPs in ionocyte func-
tion in the osmoregulatory epithelia of fish is available. 
We, therefore, hypothesized that ECM remodeling in 
fish osmoregulatory tissues might alter the ionoregula-
tory performance of ATPase-driven ion pumps. An in 
vitro approach using the inhibitors of MMP2 and MMP9 
was explored in this study to understand how MMP2 and 
MMP9 influence the plasma membrane-bound ion trans-
porters in the osmoregulatory tissue explants of the test 
species Anabas testudineus Bloch. 

2.  Materials and Methods

2.1 Fish Handling Conditions
Climbing perch Anabas testudineus Bloch, commonly 
known as ‘koi’, belonging to order Perciformes and fam-
ily Anabantidae, was used as the experimental model. As 
an omnivorous freshwater fish that exhibits air-gulping 
behavior, this fish can thrive well in low-lying water bodies 
utilizing its well-developed physiological and biochemical 
mechanisms[38-40]. Healthy adult fish, in their post-spawning 
phase, were collected from the wild and provided with fish 
feed at 1.0% body weight (30 ± 5g). Fish were maintained at 
laboratory conditions for three weeks under natural photo-
period (12 h L: 12 h D) at water temperature ranging from 
28º to 29ºC and with a mean water pH of 6.4. For static 
experimentation, the fish were transferred to 50 L glass 
tanks for two weeks before sampling. There was no mor-
tality of fish under all conditions during experimentation 
and the fish fed upon the meals provided. The regulations of 
Animal Ethical Committee of the University were followed. 

2.2 Experimental Design

2.2.1 Effects of Varied Doses of MMP2 and 
MMP9 Inhibitors in Fish
The short-term in vitro action of the inhibitors of MMP2 
or MMP9 was tested on tissue explants of gills, kidney 
and intestine of the fish. The activities of P-type ion 
transporters viz. Na+/ K+-ATPase (NKA), H+/ K+-ATPase 
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(HKA) and plasma membrane Ca2+-ATPase (PMCA) in 
these tissues were quantified. For in vitro experiment, 
twenty-four laboratory-acclimated fish were randomly 
assigned among four groups of six each. These fish were 
briefly anesthetized in 2-phenoxyethanol (SRL, Mumbai) 
solution and the blood was collected from the caudal 
artery using a 22 gauge heparinized syringe. The blood-
free tissue explants were prepared from the gills of second 
gill arch, posterior kidney and anterior intestine. The tis-
sue explants were cut into small pieces (5 mm) that pro-
vided enough surface area for the absorption of the added 
inhibitors. These tissue explants were washed thrice in 
perfusion medium to remove the tissue debris before the 
treatment. These tissue explants were then held for 10 
min for equilibration in perfusion medium on an orbital 
shaker platform at room temperature (28ºC). MMP2 or 
MMP9 inhibitor at graded concentrations (10-8, 10-7, or 
10-6 M) was added in vitro to the incubation medium 
that contained the tissue explants for either 15 or 30 min. 
Similarly, control fish which lacked the inhibitors were 
maintained concurrently. After incubating the explants 
for specified durations, the incubation was terminated by 
keeping the explants at 4ºC and were thoroughly washed 
with ice-cold perfusion medium for several times. The 
explants were then kept in SEI buffer (0.05 M pH 7.1) that 
contained 0.25 M sucrose, 10 mM Na2EDTA, and 0.1 M 
imidazole and stored at -80ºC until analysis. 

Frozen tissue explants (gills, kidney, and intestine) were 
thawed on ice quickly, weighed and homogenized (1:10, 
w:v) in SEI buffer (0.05 M; pH 7.1) using glass homoge-
nizer fitted with Teflon pestle. The homogenates were cen-
trifuged at 700 x g for 10 min at 4ºC (Eppendorf 5430R) and 
the supernatant fraction (Ho) was collected after removing 
cell debris. The oubain-specific Na+/K+-ATPase (NKA), 
and SCH 28080-sensitive gastric H+/K+-ATPase (HKA) 
activities were quantified in the Ho fraction. Vanadate-
sensitive plasma membrane Ca2+-ATPase (PMCA) activ-
ity was quantified in mitochondria-free supernatant which 
was collected after centrifuging the Ho fraction at 10,000 x 
g for 10 min at 4ºC. Protein concentrations of these frac-
tions were measured using modified Biuret assay using 
bovine serum albumin as the standard[41].

2.3 Ouabain-sensitive Na+/K+-ATPase 
(NKA) Specific Activity
The hydrolytic activity of NKA in membrane fractions  
of gill, kidney and intestine explants was quantified  

adopting the method described for microplate assay[40]. 
Briefly, each tissue samples (1.0 µg protein) was assayed 
in duplicates. Samples were added to a 96 microplate with 
saponin (0.2 mg protein-1) that increased the substrate 
accessibility. Samples were then incubated in buffer con-
taining 100 mM NaCl, 30 mM imidazole (pH 7.4), 0.1 mM 
EDTA and 5 mM MgCl2, where 0.13 mM KCl was used 
as promoter and 0.14 mM ouabain was used as inhibitor. 
The reaction was initiated by the addition of 0.3 mM ATP, 
and incubated for 15 min at 37ºC and terminated by add-
ing 8.6% ice-cold TCA. The inorganic phosphate released 
was measured in microplate reader (Synergy HT Biotek, 
USA) at 700 nm against sodium phosphate as the stan-
dard. The difference of reaction rate between total ATPase 
activity and ouabain-sensitive activity was calculated 
and expressed as µmoles of Pi liberated per hour per mg  
protein. 

2.4 SCH 28080–sensitive H+/K+-ATPase 
(HKA) Specific Activity
The hydrolytic activity of HKA in membrane fractions 
of gills, kidney and intestine were quantified based on 
NKA microplate assay[40]. Each plasma membrane frac-
tion from tissue samples (1.0 µg protein) were added to a 
96 microplate after mixing the samples with saponin (0.2 
mg protein-1) and assayed in duplicates. As inhibitor, 0.1 
mM SCH28080 [2-methyl-8-(phenylmethoxy) imidazole 
[1,2-a] pyridine-3-acetonitrile], was used whereas 0.13 
mM KCl was used as promoter. The reaction was initiated 
by the addition of 0.3 mM ATP followed by incubation 
for 15 min at 37ºC. After adding 8.6% ice-cold TCA the 
inorganic phosphate production was assayed in micro-
plate reader. The rate of enzyme activity was expressed as 
micromoles Pi liberated per hour per mg protein. 

2.5 Vanadate-sensitive Plasma Membrane 
Ca2+-ATPase (PMCA) Specific Activity
The rate of PMCA in gill, kidney and intestine explants 
was quantified based on NKA microplate assay[40]. As 
inhibitor, vanadate (mM) was used, whereas CaCl2 (mM) 
was used as promoter. The reaction was started by the 
addition of 0.3 mM ATP following an incubation period 
for 15 min at 37ºC. The inorganic phosphate released 
after adding 8.6% ice-cold TCA was measured in Synergy 
HT Biotek microplate reader and the enzyme activity 
was expressed in µmole of Pi liberated per hr per mg  
protein. 
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2.6 Data Analysis
Statistical analysis was performed by means of one-way 
analysis of variance (ANOVA) followed by Student–
Newman–Keul’s test, and data were expressed as mean ± 
SE. Data were collected from eight fishes in each group and 
significance between the groups were analyzed with the 
help of Graphpad software (Graphpad Instat-3, San Diego, 
USA) and the level of significance was accepted if P< 0.05. 

3.  Results 

3.1 In vitro Action of MMP2 and MMP9 
Inhibitors on NKA Activity
Dose- and time-dependent increase in NKA activity after 
15 and 30 min of in vitro exposure of medium (10-7) and 
higher (10-6) doses of MMP2 inhibitor were found in gill 
explants (Figure 1A). Similarly, exposure of gill explants to 
medium and higher doses of MMP9 inhibitor after 15 min 
incubation produced a significant increase in NKA activ-
ity (Figure 1B). Likewise, 30 min incubation of MMP9 
inhibitor produced a significant increase in NKA with all 
doses tested (Figure 1B). In kidney explants, exposure to 
the higher dose of MMP2 inhibitor for 15 and 30 min pro-
duced significant increase in NKA activity, whereas MMP2 
inhibitor treatment at medium dose at these time intervals 
produced significant decrease in NKA activity (Figure 1C). 
Incubation of higher dose of MMP9 inhibitor for 15 min 
produced a marked increase in NKA activity but the activ-
ity decreased after incubation with the lower and medium 
doses, though 30 min incubation produced a significant 
increase of NKA activity at all tested doses (Figure 1D). 
In intestinal explants, MMP2 inhibitor incubation at the 
medium and higher doses for 15 min increased the NKA 
activity, whereas the activity decreased after the lower dose 
of MMP2 inhibitor (Figure 1E). MMP9 inhibitor produced 
a significant decrease in NKA activity at the lower dose, 
though its activity shoot up after exposure to the higher 
dose of MMP9 inhibitor for 15 min (Figure 1F). The 
MMP9 inhibitor exposure for 30 min, however, did not 
evoke any response in intestinal NKA activity (Figure 1F).

3.2 In vitro Action of MMP2 and MMP9 
Inhibitors on HKA activity
Gill explants, upon exposure to a higher dose of MMP2 
inhibitor for 15 min, produced a significant increase in 

HKA activity but its activity decreased after incubation 
with the lower and medium doses of inhibitor for 15 min 
but incubation with medium and higher doses for 30 
min produced significant increase in its activity (Figure 
2A). Incubation of MMP9 inhibitor for 15 min and 30 
min at the medium and higher doses produced signifi-
cant increase in HKA activity in gill explants (Figure 2B). 
In kidney explants, HKA activity showed decrease after 
15 min incubation of MMP2 at the lower and medium 
doses, but it showed an increase after a higher dose of 
MMP2 inhibitor (Figure 2C). The HKA activity in kid-
ney explants showed an increase after 30 min incubation 
of MMP2 inhibitor at the medium and higher doses, and 
the MMP9 inhibitor exposure increased the HKA activ-
ity to significant levels at all the tested doses for 30 min 
(Figure 2C). On the contrary, 15 min incubation of the 
higher dose of this inhibitor significantly increased HKA 
activity but it was significantly decreased at the lower 
and medium doses (Figure 2D). In intestinal explants, 
MMP2 inhibitor at the medium and higher doses for 
15 min increased the HKA activity in a dose-dependent 
manner, though a decrease in its activity was found after 
exposure to all the three doses of MMP2 inhibitor for 30 
min. MMP9 inhibitor exposure significantly activated 
the intestinal HKA activity after 15 min of incubation at 
all three doses, whereas 30 min incubation produced an 
increase in its activity at the higher dose (Figure 2F).

3.3 In vitro Action of MMP2 and MMP9 
Inhibitors on PMCA Activity 
A significant decrease in PMCA activity was found after 
15 min and 30 min incubation with the higher dose of 
MMP2 inhibitor in gill explants (Figure 3A). Likewise, 
PMCA activity decreased in gill explants after 30 min 
incubation with all the three doses of MMP9 inhibitor. 
On the contrary, the higher dose of MMP9 inhibitor for 
30 min incubation increased the PMCA activity in gill 
explants (Figure 3B). The PMCA activity in kidney and 
intestine explants, however, did not show any response to 
30 min of MMP2 inhibitor incubation (Figure 3B). After 
15 min exposure with MMP2 inhibitor, a gradual dose-
dependent increase in PMCA activity was found in kid-
ney explants (Figure 3C). Incubation of MMP9 inhibitor 
for 30 min produced significant increase of the PMCA 
activity in kidney explants at all three doses (Figure 
3D). In intestine explants, exposure to the higher dose 
of MMP2 inhibitor for 15 min produced increase of the 
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Figure 1.  (A and B), (C and D) and (E and F) Showing the in vitro effects of varied doses of MMP2 and MMP9 inhibitor 
(MMP2/MMP9; 10-8, 10-7, 10-6 M) for 15 min and 30 min on Na+/K+-ATPase activity in the gills, kidney and intestine of fish. 
Each point is mean ± SE for six fish. The significance levels are represented as ‘‘*” (P < 0.05), ‘‘**” (P < 0.01) and ‘‘***” (P < 
0.001) compared to control fish.
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Figure 2.  (A and B), (C and D) and (E and F) Showing the in vitro effects of varied doses of MMP2 and MMP9 inhibitor 
(MMP2/MMP9; 10-8, 10-7, 10-6 M) for 15 min and 30 min on H+/K+-ATPase activity in the gills, kidney and intestine of fish. 
Each point is mean ± SE for six fish. The significance levels are represented as ‘‘*” (P < 0.05), ‘‘**” (P < 0.01) and ‘‘***” (P < 
0.001) compared to control fish.
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Figure 3.  (A and B), (C and D) and (E and F) Showing the in vitro effects of varied doses of MMP2 and MMP9 inhibitor 
(MMP2/MMP9; 10-8, 10-7, 10-6 M) for 15 min and 30 min on fish plasma membrane Ca2+-ATPase activity (PMCA) in the gills, 
kidney and intestine of fish. Each point is mean ± SE for six fish. The significance levels are represented as ‘‘*” (P < 0.05), ‘‘**” 
(P < 0.01) and ‘‘***” (P < 0.001) compared to control in the intestine of fish.
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PMCA activity, whereas the low dose of MMP9 inhibitor 
decreased its activity (Figure 3E). In intestine explants, 
MMP9 inhibitor incubation at varied doses for 30 min 
produced significant decrease in PMCA activity but it 
showed activation after 30 min incubation of higher dose 
of inhibitor (Figure 3F). 

4.  Discussion
The ECM is continuously remodeled in response to both 
intracellular and extracellular stimuli that modulate the 
physiological and pathological processes. The degree of 
remodeling, however, depends on the time and course of 
exposure to stimuli[42,43]. The roles of MMP2 and MMP9 
are well studied in mammals where they are involved in 
the breakdown of ECM components and thus facilitate 
tissue remodeling during normal and pathological condi-
tions[44-46]. However, the physiological role of MMPs on 
ion transport function has not yet been examined in fish. 

Fishes are unique among vertebrates and have well 
developed mechanisms to regulate osmotic and ionic 
homeostasis through several ion transporters that are 
important for maintaining normal cellular and physiolog-
ical activities[47,40]. The physiological action of MMPs on 
ion transport function has not yet been studied in fishes. 
In the present study, we selected lower doses of inhibitors 
of MMPs in nanomolar concentration to evoke physi-
ological response that does not reveal any toxicity as sug-
gested earlier[48]. We used tissue explants for studying the 
action of inhibitors of MMPs since earlier investigators 
have extensively explored in vitro cell line studies[48,49]. 

In fresh water teleosts, the ionic and osmotic balances 
are maintained through various ion pumps, especially 
P-type ion transporters such as NKA, HKA and PMCA 
present in the osmoregulatory organs[18,19,21]. As the major 
osmoregulatory organs of teleost fish gills, kidney and 
intestine play major roles in integrating ionic and osmotic 
homeostasis that are sensitive to stressful environmental 
conditions[50,17,18,40,51]. The role of ECM components, par-
ticularly MMP2 and MMP9, in ion transporter functions 
that regulate ion homeostasis is not yet understood in 
fishes. The specific inhibitors of tissue MMP2 and MMP 
9 used in this study clearly indicate that the inhibitors of 
MMP2 and 9 might have lowered its tissue contents in 
the tested tissues that would lead the modulation of the 
ion transporter activity. The elevated NKA activity in all 
tested explants after inhibitor treatments indicate a role 
for MMP2 and 9 in Na+ homeostasis. In freshwater tele-

ost fish, the active uptake of Na+ ion from freshwater is 
mainly carried out by the several channels and sodium 
hydrogen (NHE) antiporters present in the apical mem-
brane. The concurrent excretion of Na+ ion into plasma 
occurs due to the coordinating functions of ion chan-
nels and transporters including NKA, Na+/Cl- transport-
ers (NCC), Na/K/Cl co-transporters (NKCC), and cystic 
fibrosis transmembrane conductance regulator (CFTR) 
chloride channels[52-55]. 

The dose and time-dependent action of MMP2 and 
MMP9 inhibitors on NKA activity in the organs playing 
role in osmoregulation point to a direct action of these 
inhibitors on remodeling proteases such as gelatinase A 
and B. Similar response has been found in HKA activ-
ity which also showed a dose-dependent increase after 
treatment of inhibitor. It is likely that structural similarity 
between NKA and HKA would also contribute to its simi-
lar response to the tested inhibitors[26]. The present in vitro 
model thus confirms the temporal and spatial action of 
these inhibitors on the tested ion transporter functions in 
the osmoregulatory epithelia. This further indicates that 
remodeling of ECM component would demand involve-
ment of gelatinases A and B as major extracellular regu-
lators that can control membrane-bound ion transport 
function. In fishes, MMPs are known for involvement in 
follicular development, oocyte maturation, embryogen-
esis and immune response[4,56-60]. Furthermore, MMP2 
and MMP9 inhibitors have been shown to modulate 
the migration of lens epithelial cells during their devel-
opment under normal conditions[60,61]. Several studies 
used MMP2 and MMP9 inhibitors to examine vascular 
smooth muscle migration after vascular injury, progres-
sion of various cancers, and remodeling of lungs during 
hypoxia[62-65]. It is clear that a pool of NKA that resides in 
the plasma membrane is activated by the modified MMP2 
and 9 distributions due to the inhibitor treatment in the 
tested tissue explants. This, further, points to the cross-
talks that exist between ECM components and ionocytes 
present in the osmoregulatory epithelia of fish.

The diffusion loss of ions and the osmotic influx of 
water are balanced in freshwater teleosts via absorption 
of ions across the gills and excretion of large amounts of 
urine through the kidneys[66]. The ion transporters pres-
ent in the osmoregulatory organs carry out these func-
tions and maintain ionic equilibrium across the plasma 
membrane, utilizing energy derived from ATP hydroly-
sis. Plasma membranes of osmotic epithelia that possess 
NKA, HKA and PMCA actively pump Na+/H+ and Ca2+ 
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ions that play major roles in cellular and systemic ion 
homeostasis[33,67,28,68,40]. It appears that during the incuba-
tion of tissue explants with the inhibitors of MMP2 and 
MMP9 there could be disturbed synthesis of MMP2 and 
MMP9 that would ultimately loosen the ECM architecture 
that holds the ionocytes. The elevated ion pump activities, 
therefore, account for the disturbed MMP2 and MMP9 
synthesis. Our data further indicate that the higher dose 
of inhibitor could loosen the ionocytes that would aug-
ment the rate of activity of NKA and HKA tested in tissue 
explants. Furthermore, it appears that the concentration 
and duration of exposure of MMP inhibitor would bring 
about substantial alteration in ECM architecture leading 
to a modulated NKA and HKA activities. These findings 
are in agreement with the previous studies that reported 
major role of ion transporters in normal and pathologi-
cal conditions as it can regulate ionic mechanisms of cells 
via pH-dependent and Ca2+– dependent regulation of 
cell volume[69]. Further, our results imply that MMP2 and 
MMP9 are critical in regulating these membrane-bound 
ion pumps and thus support the notion that ionocyte 
function is in tune with ECM components, pointing fur-
ther to the integration of ion transporter functions during 
ECM remodeling.

The data thus support the hypothesis that experimen-
tal remodeling using the inhibitors of MMP2 and MMP9 
would modify the performance of P-type ion pumps in 
osmoregulatory epithelia of fish. This study, first of its 
kind, thus, explores the integrative action of MMP2 and 
MMP9 as ECM remodeling components on the ion trans-
porter functions in osmoregulatory epithelia of fish.
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