Assemblage of spider diversity in Okkarai region of Pachamalai hills, Eastern Ghats, Tiruchirappalli district, Tamil Nadu, India

Jump To References Section

Authors

  • Department of Zoology, Thanthai Periyar Government Arts and Science College (Affiliated to Bharathidasan University), Tiruchirappalli – 620023, Tamil Nadu ,IN
  • Department of Zoology, Thanthai Periyar Government Arts and Science College (Affiliated to Bharathidasan University), Tiruchirappalli – 620023, Tamil Nadu ,IN
  • Department of Zoology, Thiruvalluvar University, Vellore 632 115, Tamil Nadu, India ,IN
  • Department of Zoology, Madras Christian College, Chennai – 600059, Tamil Nadu ,IN

DOI:

https://doi.org/10.18311/jbc/2023/35639

Keywords:

Diversity, evenness, guilds, species, richness, spiders

Abstract

The Okkarai area of Pachamalai hills, Eastern Ghats, Tiruchirappalli district, Tamil Nadu, India, was studied for spider diversity in the current study. In total, 178 spiders were recorded, belonging to 12 distinct families (Araneidae, Desidae, Linyphiidae, Nephilidae, Oxyopidae, Pholcidae, Pisauridae, Salticidae, Sparassidae, Tetragnathidae, Theridiidae and Thomisidae), and 17 and 20 different genera and species, respectively. Araneidae family dominated the spider population, and the family dominance curve was in the ascending order of Araneidae (25.28%) > Oxyopidae (14.04%) > Pholcidae (14.04%) > Thomisidae (10.11%) > Tetragnathidae (7.86%) > Linyphiidae (6.74%) > Nephilidae (6.17%) > Sparassidae (5.05%) > Theridiidae (4.49%) > Pisauridae (3.37) > Salticidae (2.24%) > Desidae (0.56%). Araneidae (17.64%) had the most genera per family, and Araneidae and Oxyopidae (20.00%) had the most species per family; and about species composition, Pholcus phalangioides dominated with 14.04%. Spider guilds were represented by web patterns as well as hunting patterns. Web pattern comprised orb web (60.86%), cobweb (34.78%) and sheet web (4.34%). Orb web was represented by families Araneidae, Nephilidae and Tetragnathidae; cobweb by Desidae, Pholcidae, Pisauridae and Theridiidae; while Linyphiidae for sheet web. Ambushers (53.22%) and stalkers (46.77%) represented the hunting pattern whereas Pisauridae, Sparassidae and Thomisidae represented ambushers, and Oxyopidae and Salticidae represented stalkers. Araneidae and Oxyopidae had high species richness indicated by Hill’s (4), Margalef’s (1.33), and Menhinick’s (0.299) indices. Salticidae had high species evenness denoted by Alatalo’s (0.578), Pielou’s (0.488), Shannon’s (1.471) and Sheldon’s (1.413) indices; while Linyphiidae represented Heip’s index (1.347). Araneidae scored high on other indices, viz., Berger-Parker dominance (25.28%), community dominance (1.24), and relative dominance (20.00%); while Salticidae had a high Hill’s number abundance (1.413%), and Pholcidae had a high relative frequency (0.55). This study will contribute to the data on spider biodiversity, taxonomy, it's abundance, distribution, and community organization.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-12-31

How to Cite

VASSOU, M. C., TAMILPERIYARDHASAN, S., ARIVOLI, S., & TENNYSON, S. (2023). Assemblage of spider diversity in Okkarai region of Pachamalai hills, Eastern Ghats, Tiruchirappalli district, Tamil Nadu, India. Journal of Biological Control, 37(4), 249–264. https://doi.org/10.18311/jbc/2023/35639

Issue

Section

Research Articles
Received 2023-11-18
Accepted 2023-12-15
Published 2023-12-31

 

References

Alatalo, R. V. 1981. Problems in the measurement of evenness in ecology. Oikos, 37: 199-200. https://doi.org/10.2307/3544465 DOI: https://doi.org/10.2307/3544465

Androw, D. A. 1991. Vegetational diversity and arthropod population response. Annu Rev Entomol, 36: 561-586. https://doi.org/10.1146/annurev.en.36.010191.003021 DOI: https://doi.org/10.1146/annurev.en.36.010191.003021

Barrion, A. T., Litsinger, J. A. 1995. Riceland spider of South and Southeat Asia, CAB International, Cambridge.

Benamu, M. A. 2020. The importance of spider diversity in agroecosystems and the effect of pesticides. Glob J Ecol, 5(1): 60-61.

Sebastian, P. A., and Peter, K. V. 2009. Spiders of India. First edition, (pp. 1-734). University Press.

Berger, W. H., and Parker, F. L. 1970. Diversity of planktonic foraminifera in deep-sea sediments. Science, 168: 1345-1347. https://doi.org/10.1126/science.168.3937.1345 PMid:17731043 DOI: https://doi.org/10.1126/science.168.3937.1345

Biswas, B., and Biswas, K. 1992. Araneae: Spiders state Fauna Series 3: Fauna of West Bengal. Zoological Survey of India, Kolkata (pp. 357-500).

Blackledge, T. A., Coddington, J. A., and Gillespie, R. G. 2003. Are three-dimensional spider webs defensive adaptations? Ecol Lett, 6: 13-18. https://doi.org/10.1046/j.1461-0248.2003.00384.x DOI: https://doi.org/10.1046/j.1461-0248.2003.00384.x

Bond, J. E., Opell, and B. D. 1998. Testing adaptive radiation and key innovation hypotheses in spiders. Evolution, 52: 403-414. https://doi.org/10.1111/j.1558-5646.1998. tb01641.x PMid:28568335 DOI: https://doi.org/10.1111/j.1558-5646.1998.tb01641.x

Boulinier, T., Nichols, J. D., Sauer, J. R., Hines, J. E., and Pollock, K. H. 1998. Estimating species richness: The importance of heterogeneity in species detectability. Ecology, 79: 1018-1028. https://doi.org/10.1890/0012-9658(1998)079[1018:ESRTIO]2.0.CO;2 DOI: https://doi.org/10.1890/0012-9658(1998)079[1018:ESRTIO]2.0.CO;2

Brady, A. R. 1975. The lynx spider genus Oxyopes in Mexico and Central America (Araneae: Oxyopidae). Psyche, 82(2): 189-243. https://doi.org/10.1155/1975/24938 DOI: https://doi.org/10.1155/1975/24938

Brillouin, L. 1956. Science and information theory. Academic Press. New York.

Buddle, C. M., and Rypstra, A. L. 2003. Factors initiating emigration of two wolf spider species (Aranae: Lycosidae) in an agroecosystem. Environ Entomol, 32: 88-95. https://doi.org/10.1603/0046-225X-32.1.88 DOI: https://doi.org/10.1603/0046-225X-32.1.88

Caleb, J. T. D. 2016. Taxonomic notes on some ant-mimicking jumping spiders (Araneae: Salticidae) from India. Arthropoda Sel, 25: 403-420. https://doi.org/10.15298/arthsel.25.4.09 DOI: https://doi.org/10.15298/arthsel.25.4.09

Campuzano, E. F., Ibarra-Núñez, G., Machkour, M., Rabet, S., Morón-Ríos, A., and Jiménez, M. L. 2019. Diversity and seasonal variation of ground and understory spiders from a tropical mountain cloud forest. Insect Sci, 27: 826-844. https://doi.org/10.1111/1744-7917.12693 PMid:31112329 DOI: https://doi.org/10.1111/1744-7917.12693

Cardoso, P., Pekár, S., Jocqué, R., and Coddington, J. A. 2011. Global patterns of guild composition and functional diversity of spiders. PLoS One, 6(6): e21710. https://doi.org/10.1371/journal.pone.0021710 PMid:21738772 PMCid:PMC3126856 DOI: https://doi.org/10.1371/journal.pone.0021710

Cardoso, P. 2012. Diversity and community assembly patterns of epigean versus troglobiont spiders in the Iberian peninsula. Int J Speleol, 41(1): 83-94. https://doi.org/10.5038/1827-806X.41.1.9 DOI: https://doi.org/10.5038/1827-806X.41.1.9

Carvalho, J. C., Malumbres-Olarte, J., Arnedo, M. A., Crespo, L. C., Domenech, M., and Cardoso, P. 2020. Taxonomic divergence and functional convergence in Iberian spider forest communities: Insights from beta diversity partitioning. J Biogeogr, 47(1): 288-300. https://doi.org/10.1111/jbi.13722 DOI: https://doi.org/10.1111/jbi.13722

Chen, K. C., and Tso, I. M. 2004. Spider diversity on Orchid island, Taiwan: A comparison between habitats receiving different degrees of human disturbance. Zool Stud, 43(3): 598-611.

Chew, R. M. 1961. Ecology of spiders of desert community. J N Y Entomol Soc, 9: 5-41.

Coddington, J. A., and Levi, H. W. 1991. Systematics and evolution of spiders (Araneiae). Annu Rev Ecol Evol Syst, 22: 565-592. https://doi.org/10.1146/annurev.es.22.110191.003025 DOI: https://doi.org/10.1146/annurev.es.22.110191.003025

Colwell, R., and Coddington, J. A. 1994. Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond B Biol Sci, 345: 101-118. https://doi.org/10.1098/rstb.1994.0091 PMid:7972351 DOI: https://doi.org/10.1098/rstb.1994.0091

Corey, D. T., Stout, I. J., and Edwards, G. B. 1998. Ground surface spider fauna in Florida sandhill communities. J Arachnol, 26(3): 303-316.

Culin, J. D., and Yeargan, K. V. 1983. Comparative study of spider communities in alfalfa and soybean ecosystems: Ground surface spiders. Ann Entomol Soc Am, 76: 832-838. https://doi.org/10.1093/aesa/76.5.832 DOI: https://doi.org/10.1093/aesa/76.5.832

Davies, T. V., and Zabka, M. 1989. Illustrated keys to the genera of jumping spiders (Araneae: Salticidae) in Australia. Mem Queensl Mus, 27: 189-266.

Decae, A. E. 1984. A theory on the origin of spiders and the primitive function of spider silk. J Arachnol, 12: 21-28.

Dias, S. C., Carvalho, L. S., Bonaldo, A. B., and Brescovit, A. D. 2010. Refining the establishment of guilds in Neotropical spiders (Arachnida: Araneae). J Nat Hist, 44: 219-239. https://doi.org/10.1080/00222930903383503 DOI: https://doi.org/10.1080/00222930903383503

Dimitrov, D., and Hormiga, G. 2021. Spider diversification through space and time. Annu Rev Entomol, 66: 225-241. https://doi.org/10.1146/annurev-ento-061520-083414 PMid:32822555 DOI: https://doi.org/10.1146/annurev-ento-061520-083414

Downie, I. S., Wilson, L., Abernethy, V. J., Mccracken, D. I., Foster, G. N., Ribera, I., Murphy, K. J., and Waterhouse, A. 1999. The impact of different agricultural land-use on epigeal spider diversity in Scotland. J Insect Conser, 3: 273-286. https://doi.org/10.1023/A:1009649222102 DOI: https://doi.org/10.1023/A:1009649222102

Dutoit, T., Buisson, E., Gerbaud, E., Roche, P., and Tatoni, T. 2007. The status of transitions between cultivated fields and their boundaries: ecotones, ecoclines or edge effects? Acta Oecol, 31: 127-136. https://doi.org/10.1016/j.actao.2006.03.010 DOI: https://doi.org/10.1016/j.actao.2006.03.010

Ezeonyejiaku, C. D., Okoye, C. O., Anaesoronye, M. C., and Mogbo, T. C. 2019. Spider diversity pattern and community composition in the South Eastern Nigeria: An analysis of habitat differences. J Appl Sci Environ Manage, 23(7): 1377-1381. https://doi.org/10.4314/ jasem.v23i7.29 DOI: https://doi.org/10.4314/jasem.v23i7.29

Finch, O. D., Blick, T., and Schuldt, A. 2008. Macroecological patterns of spider species richness across Europe. Biodivers Conserv, 17(12): 2849-2868. https://doi.org/10.1007/s10531-008-9400-x DOI: https://doi.org/10.1007/s10531-008-9400-x

Foelix, R. 2011. Biology of spiders (3rd edition). Oxford University Press, Oxford and New York.

Foelix, R. F. 1996. Biology of spiders (2nd edition). Oxford University Press, New York.

Freitas, G. C. C., Brescovit, A. D., and Vasconcelos, S. D. 2013. Spider diversity on the oceanic island of Fernando de Noronha, Brazil, and implications for species conservation. J Insect Sci, 13. https://doi.org/10.1673/031.013.14801 PMCid:PMC4015397 DOI: https://doi.org/10.1673/031.013.14801

Galle, R., Vesztergom, N., and Somogyi, T. 2011. Environmental conditions affecting spiders in grasslands at the lower reach of the river Tisza in Hungary. Entomol Fenn, 22: 90-99. https://doi.org/10.33338/ef.4241 DOI: https://doi.org/10.33338/ef.4241

Gerlach, J., Samways, M., and Pryke, J. 2013. Terrestrial invertebrates as bioindicators an overview of available taxonomic groups. J Insect Conserv, 17: 831-850. https://doi.org/10.1007/s10841-013-9565-9 DOI: https://doi.org/10.1007/s10841-013-9565-9

Gillespie, R. G. 1987. The mechanism of habitat selection in the long-jawed orb-weaving spider Tetragnatha elongata (Araneae, Tetragnathidae). J Arachnol, 15: 81-90.

Goswami, M., Bhattacharyya, P., Mukherjee, I., and Tribedi, P. 2017. Functional diversity: An important measure of ecosystem functioning. Adv Appl Microbiol, 7: 82-93. https://doi.org/10.4236/aim.2017.71007 DOI: https://doi.org/10.4236/aim.2017.71007

Gravely, F. H. 1931. Some Indian spiders of the families Ctenidae, Sparassidae, Selenopidae and Clubionidae. Rec Ind Mus, 33: 211-282. https://doi.org/10.26515/rzsi/v33/i3/1931/162502 DOI: https://doi.org/10.26515/rzsi/v33/i3/1931/162502

Green, J. 1999. Sampling method and time determines composition of spider collections. J Arachnol, 27: 176-182.

Greenstone, M. H. 1984. Determinants of web spider species diversity: vegetation structural diversity vs. prey availability. Oecologia, 62: 299-304. https://doi.org/10.1007/BF00384260 PMid:28310881 DOI: https://doi.org/10.1007/BF00384260

Gunnarsson, B. 2007. Bird predation on spiders: ecological mechanisms and evolutionary consequences. J Arachnol, 35: 509-529. https://doi.org/10.1636/RT07-64.1 DOI: https://doi.org/10.1636/RT07-64.1

Guruswamy, S., Madhavi, Mahesh, L., and Beena, Z. G. 2022. Diversity and abundance of spider fauna of agro-ecosystems: A case study of Mahabubnagar district, Telangana state. J Biol Control, 36(2&3): 175-178. DOI: https://doi.org/10.18311/jbc/2022/32062

Harwood, J. D., Sunderland, K. D., and Symondson, W. O. C. 2001. Living where the food is: web location by linyphiid spiders in relation to prey availability in winter wheat. J Appl Ecol, 38(1): 88-99. https://doi.org/10.18311/jbc/2022/32062 DOI: https://doi.org/10.1046/j.1365-2664.2001.00572.x

Harwood, J. D., Sunderland, K. D., and Symondson, W. O. C. 2003. Web location by linyphiid spiders: prey-specific aggregation and foraging strategies. J Anim Ecol, 72: 745-756. https://doi.org/10.1046/j.1365-2664.2001.00572.x DOI: https://doi.org/10.1046/j.1365-2656.2003.00746.x

Hatley, C. L., and MacMohan, J. A. 1980. Spider community organization: Seasonal variation and the role of vegetation architecture. Environ Entomol, 9: 632-63. https://doi.org/10.1093/ee/9.5.632 DOI: https://doi.org/10.1093/ee/9.5.632

Heikkinen, M. W., and MacMahon, J. A. 2001. Assemblages of spiders on models of semi-arid shrubs. J Arachnol, 32: 313-323. https://doi.org/10.1636/M02-1 DOI: https://doi.org/10.1636/M02-1

Heip, C. 1974. A new index for measuring evenness. J Mar Biol Assoc UK, 54: 555-557. https://doi.org/10.1017/S0025315400022736 DOI: https://doi.org/10.1017/S0025315400022736

Heip, C, and Engels, P. 1974. Comparing species diversity and evenness indices. J Mar Biol Assoc UK, 54: 559-563. https://doi.org/10.1017/S0025315400022748 DOI: https://doi.org/10.1017/S0025315400022748

Hendrickx, F., Maelfait, J. P., van Wingerden, W., Schweiger, O., Speelmans, M., Aviron, S., Augestein, I., Billeter, R., Bailey, D., Bukacek, R., Burel, F., Diekotter, T., Dirksen, J., Herzog, F., Liira, J., Roubalova, M., Vandomme, V., and Bugter, R. 2007. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J Appl Ecol, 44(2): 340-351. https://doi.org/10.1111/j.1365-2664.2006.01270.x DOI: https://doi.org/10.1111/j.1365-2664.2006.01270.x

Hill, M. O. 1973. Diversity and evenness: A unifying notation and its consequences. Ecology, 54: 427-432. https://doi.org/10.2307/1934352 DOI: https://doi.org/10.2307/1934352

Horváth, R., Lengyel, S., Szinetár, C., and Jakab, L. 2005. The effect of prey availability on spider assemblages on European black pine (Pinus nigra) bark: Spatial patterns and guild structure. Can J Zool, 83(2): 324-335. https://doi.org/10.1139/z05-009 DOI: https://doi.org/10.1139/z05-009

Humphries, C. J., Wiliams, P. H., and Vane-Wright, R. I. 1995. Measuring spider diversity value for conservation. Annu Rev Ecol Syst, 26: 93-111. https://doi.org/10.1146/annurev.es.26.110195.000521 DOI: https://doi.org/10.1146/annurev.es.26.110195.000521

Jiménez-Valverde, A., Baselga, A., Melic, A., and Txasko, N. 2010. Climate and regional beta-diversity gradients in spiders: dispersal capacity has nothing to say? Insect Conserv Divers, 3: 51-60. https://doi.org/10.1111/j.1752-4598.2009.00067.x DOI: https://doi.org/10.1111/j.1752-4598.2009.00067.x

John, R. M., and Tom, H. 2018. A preliminary study on the spider diversity of a rice ecosystem in Kumarakom. J Entomol Zool Stud, 6(5): 827-829.

Kashmeera, N. A., and Sudhikumar, A. V. 2019. A checklist of spider fauna of Rajasthan, India. J Threat Taxa, 11(1): 13184-13187. https://doi.org/10.11609/jott.3869.11.1.13184-13187 DOI: https://doi.org/10.11609/jott.3869.11.1.13184-13187

Kato, M., Inoue, T., Hamid, A. A., Nagamitsu, T., Merdek, M. B., Nona, A. R., Hino, T., Yamane, S., and Yumoto, T. 1995. Seasonality and vertical structure of light attracted insect communities in a dipterocarp forest in Sarawak. Res Popul Ecol, 37(1): 59-79. https://doi.org/10.1007/BF02515762 DOI: https://doi.org/10.1007/BF02515762

Kiritani, K., Kawahara, S., Sasaba, T., and Nakasuji, F. 1972. Quantitative evaluation of predation by spiders on the green rice leafhopper, Nephotettix cincticeps Uhler, by a sight-count method. Popul Ecol, 13(2): 187-200. https://doi.org/10.1007/BF02521977 DOI: https://doi.org/10.1007/BF02521977

Kremen, C., Colwell, R. K., Erwin, T. L., Murphy, D. D., Noss, R. F., and Sanjayan, M. A. 1993. Terrestrial arthropod assemblages: their use in conservation planning. Conserv Biol, 7: 796-808. https://doi.org/10.1046/j.1523-1739.1993.740796.x DOI: https://doi.org/10.1046/j.1523-1739.1993.740796.x

Kuntner, M., and Agnarsson, I. 2011. Phylogeography of a successful aerial disperser: The golden orb spider Nephila on Indian ocean islands. BMC Evol Biol, 11: 119. https://doi.org/10.1186/1471-2148-11-119 PMid:21554687 PMCid:PMC3098804 DOI: https://doi.org/10.1186/1471-2148-11-119

Lafage, D., Djoudi, E. A., Perrin, G., Gallet, S., and Petillon, J. 2019. Responses of ground-dwelling spider assemblages to changes in vegetation from wet oligotrophic habitats of Western France. Arthropod Plant Interact, 13: 653-662. https://doi.org/10.1007/s11829-019-09685-0 DOI: https://doi.org/10.1007/s11829-019-09685-0

Langellotto, G. A., and Denno, R. F. 2004. Responses of invertebrate natural enemies to complex-structured habitats: a metaanalytical synthesis. Oecologia, 139: 1-10. https://doi.org/10.1007/s00442-004-1497-3 PMid:14872336 DOI: https://doi.org/10.1007/s00442-004-1497-3

Larrivee, M., and Buddle, C. M. 2010. Scale dependence of tree trunk spider diversity patterns in vertical and horizontal space. Ecoscience, 17: 400-410. https://doi.org/10.2980/17-4-3403 DOI: https://doi.org/10.2980/17-4-3403

Loboda, S., and Buddle, C. M. 2018. Small to large-scale patterns of ground-dwelling spider (Araneae) diversity across northern Canada. FACETS, 3: 880-895. https://doi.org/10.1139/facets-2018-0007 DOI: https://doi.org/10.1139/facets-2018-0007

Lubin, Y. D. 1978. Seasonal abundance and diversity of web building spiders in relation to habitat structure on Barro Colorado island, Panama. J Arachnol, 6: 31-51.

Ludwig, J. A., and Reynolds, J. F. 1968. Statistical ecology. A primer on methods and computing. John Wiley and Sons, New York. https://doi.org/10.1002/ece3.4028 PMid:30038747 PMCid:PMC6053566

Ludwig, L., Barbour, M. A., Guevara, J., Aviles, L., and Gonzalez, A. L. 2018. Caught in the web: spider web architecture affects prey specialization and spider–prey stoichiometric relationships. Ecol Evol, 8: 6449-6462. DOI: https://doi.org/10.1002/ece3.4028

Mac Arthur, R. H. 1965. Patterns of species diversity. Biol Rev, 40: 510-533. https://doi.org/10.2307/1934090 DOI: https://doi.org/10.1111/j.1469-185X.1965.tb00815.x

Mac Arthur, R. H., Diamond, J. M., and Karr, J. R. 1972. Density compensation in island faunas. Ecology, 53: 330-342. https://doi.org/10.1111/j.1469-185X.1965. tb00815.x DOI: https://doi.org/10.2307/1934090

Majer, M., Svenning, J. C., and Bilde, T. 2015. Habitat productivity predicts the global distribution of social spiders. Front Ecol Evol, 3: 101. https://doi.org/10.3389/fevo.2015.00101 DOI: https://doi.org/10.3389/fevo.2015.00101

Malumbres-Olarte, J., Crespo, L., Cardoso, P., Szűts, T., Fannes, W., Pape, T., and Scharff, N. 2018. The same but different: equally megadiverse but taxonomically variant spider communities along an elevational gradient. Acta Oecol, 88: 19-28. https://doi.org/10.1016/j.actao.2018.02.012 DOI: https://doi.org/10.1016/j.actao.2018.02.012

Malumbres-Olarte, J., Vink, C. J., Ross, J. G., Cruickshank, R. H., and Paterson, A. M. 2013. The role of habitat complexity on spider communities in native alpine grasslands of New Zealand. Insect Conserv Divers, 6: 124-134. https://doi.org/10.1111/j.1752-4598.2012.00195.x DOI: https://doi.org/10.1111/j.1752-4598.2012.00195.x

Marc, P., Canard, A., and Ysnel, F. 1999. Spiders (Araneae) useful for pest limitation and bioindication. Agric Ecosyst Environ, 74: 229-273. https://doi.org/10.1016/B978-0-444-50019-9.50015-7 DOI: https://doi.org/10.1016/B978-0-444-50019-9.50015-7

Margalef, R. 1958. Information theory in ecology. Gen Syst, 3: 36-71.

May, R. 1988. How many species are there on earth? Science, 241: 1441-1443. https://doi.org/10.1126/science.241.4872.1441 PMid:17790039 DOI: https://doi.org/10.1126/science.241.4872.1441

Menhinick, E. P. 1964. A comparison of some-species individuals diversity indices applied to samples of field insects. Ecology, 45(4): 859-861. https://doi.org/10.2307/1934933 DOI: https://doi.org/10.2307/1934933

Michalko, R., Pekar, S., Dula, M., and Entling, M. H. 2019. Global patterns in the biocontrol efficacy of spiders: A meta‐analysis. Glob Ecol Biogeogr, 28: 1366-1378. https://doi.org/10.1111/geb.12927 DOI: https://doi.org/10.1111/geb.12927

Morse, D. H. 1984. How crab spiders (Araneae: Thomisidae) hunt at flowers. J Arachnol, 12: 307-316.

New, T. R. 1999. Untangling the web: Spiders and the challenges of invertebrate conservation. J Insect Conserv, 3: 251-256. https://doi.org/10.1023/A:1009697104759 DOI: https://doi.org/10.1023/A:1009697104759

Nyffeler, M. 2000. Ecological impact of spiders predation; A critical assessment of Bristowe’s and Turnbull’s estimates. Br Arachnol Soc, 11(9): 367-373.

Nyffeler, M., and Benz, M. 1987. Spiders in natural pest control: A review. J Appl Entomol, 103: 321-339. https://doi.org/10.1111/j.1439-0418.1987.tb00992.x DOI: https://doi.org/10.1111/j.1439-0418.1987.tb00992.x

Nyffeler, M., and Birkhofer, K. 2017. An estimated 400-800 million tons of prey are annually killed by the global spider community. Naturwissenschaften, 104(3-4): 30. https://doi.org/10.1007/s00114-017-1440-1 PMid:28289774 PMCid:PMC5348567 DOI: https://doi.org/10.1007/s00114-017-1440-1

Palem, H., Kanike, S., and Purushottam, V. R. S. 2016. Diversity of spider fauna (Arachnida: Araneae) in different ecosystems, Eastern Ghats, Southern Andhra Pradesh, India. South Asian J Life Sci, 4(2): 51-60. https://doi.org/10.14737/journal.sajls/2016/4.2.51.60 DOI: https://doi.org/10.14737/journal.sajls/2016/4.2.51.60

Pekar, S., Garcia, L. F., and Viera, C. 2017. Trophic niches and trophic adaptations of prey-specialized spiders from the neotropics: A guide. In: Viera C, Gonzaga MO (eds.). Behaviour and Ecology of Spiders: Contributions from the Neotropical Region, (pp. 247-274). Springer International Publishing. https://doi.org/10.1007/978-3-319-65717-2_10 DOI: https://doi.org/10.1007/978-3-319-65717-2_10

Pétillon, J., Georges, A., Canard, A., Lefeuvre, J. C., Bakker, J. P., and Ysnel, F. 2008. Influence of abiotic factors on spider and ground beetle communities in different salt-marsh systems. Basic Appl Ecol, 9(6): 743-751. https:// doi.org/10.1016/j.baae.2007.08.007 DOI: https://doi.org/10.1016/j.baae.2007.08.007

Pielou, E. C. 1966. The measurement of diversity in different types of biological collections. J Theor Biol, 13: 131-144. https://doi.org/10.1016/0022-5193(66)90013-0 DOI: https://doi.org/10.1016/0022-5193(66)90013-0

Platnick, N. I., and Raven, R. J. 2013. Spider systematics: past and future. Zootaxa, 3683: 595-600. https://doi.org/10.11646/zootaxa.3683.5.8 PMid:25250473 DOI: https://doi.org/10.11646/zootaxa.3683.5.8

Pocock, R. I. 1900. The fauna of British India including Ceylon and Burma. Taylor and Francis.

Post, W. M., and Riechert, S. E. 1977. Initial investigation into the structure of spider communities. J Anim Ecol, 46: 729-749. https://doi.org/10.2307/3637 DOI: https://doi.org/10.2307/3637

Quinones, L., Barrion-Dupo, A. L., and Nuneza, O. 2016. Salticidae species richness in Rajah Sikatuna Protected Landscape (RSPL), Bohol, Philippines. ELBA Bioflux, 8(1): 18-26.

Raizor, J., and Amaral, M. E. C. 2001. Does the structural complexity of aquatic macrophytes explain the diversity of associated spider assemblages? J Arachnol, 29: 227-237. https://doi.org/10.1636/0161-8202(2001)029[0227:DTSCOA]2.0.CO;2 DOI: https://doi.org/10.1636/0161-8202(2001)029[0227:DTSCOA]2.0.CO;2

Rajendran, R., Kaliyaperumal, S., and Periyasamy, K. 2017. Diversity and distribution of spider (Araneae) in different ecosystem of Puthanampatti, Tiruchirappalli district, Tamil Nadu, South India. Int J Sci Eng Res, 8(10): 1056-1060.

Richardson, J. L. 1977. Dimensions of ecology. Williams and Wilkins Co., Baltimore USA, 1-412.

Riechert, S. E., and Lockley, T. 1984. Spiders as biological control agents. Annu Rev Entomol, 29: 299-320. https://doi.org/10.1146/annurev.en.29.010184.001503 DOI: https://doi.org/10.1146/annurev.en.29.010184.001503

Rodrigues, E. N. L., Mendoca, M. S., and Costa-Schmidt, L. E. 2014. Spider diversity responds strongly to edge effects but weakly to vegetation structure in riparian forests of Southern Brazil. Arthropod Plant Interact, 8(2): 123-133. https://doi.org/10.1007/s11829-014-9294-3 DOI: https://doi.org/10.1007/s11829-014-9294-3

Romero, G. Q., and Vasconcellos, J. 2004. Spatial distribution patterns of jumping spiders associated with terrestrial bromeliads. Biotropica, 36: 596-601. https://doi.org/10.1111/j.1744-7429.2004.tb00353.x DOI: https://doi.org/10.1111/j.1744-7429.2004.tb00353.x

Romero, G. Q., and Vasconcellos-Neto, J. 2005a. Spatial distribution and microhabitat preference of Psecas chapoda (Peckham and Peckham) (Araneae, Salticidae). J Arachnol, 33: 124-134. https://doi.org/10.1636/M03-9 DOI: https://doi.org/10.1636/M03-9

Romero, G. Q., and Vasconcellos-Neto, J. 2005b. The effects of plant structure on the spatial and microspatial distribution of a bromeliad-living jumping spider (Salticidae). J Anim Ecol, 74: 12-21. https://doi.org/10.1111/j.1365-2656.2004.00893.x DOI: https://doi.org/10.1111/j.1365-2656.2004.00893.x

Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press. https://doi.org/10.1017/CBO9780511623387 DOI: https://doi.org/10.1017/CBO9780511623387

Samu, F., Sunderland, K. D., and Szinetar, C. 1999. Scale dependent dispersal and distribution patterns of spiders in agricultural systems: A review. J Arachnol, 27: 325-332.

Samu, F., Sunderland, K. D., Topping, C. J., and Fenlon, J. S. 1996. A spider population in flux: Selestion and abandonment of artificial web-sites and the importance of intraspecific interactions in Lepthyphantes tenuis (Aranae: Linyphiidae) in wheat. Oecologia, 106: 228-239. https://doi.org/10.1007/BF00328603 PMid:28307648 DOI: https://doi.org/10.1007/BF00328603

Saranya, V. S. L., Samiayyan, K., and Prema, M. S. 2019. Diversity of predatory spider fauna in maize ecosystem. J Biol Control, 33(1): 27-35. https://doi.org/10.18311/jbc/2019/22093 DOI: https://doi.org/10.18311/jbc/2019/22093

Scharf, I., and Ovadia, O. 2006. Factors influencing site abandonment and site selection in a sit-and-wait predator: A review of pit-building antlion larvae. J Insect Behav, 19: 197-218. https://doi.org/10.1007/s10905-006-9017-4 DOI: https://doi.org/10.1007/s10905-006-9017-4

Scheidler, M. 1990. Influence of habitat structure and vegetation architecture on spiders. Zool Anz, 5: 333-340.

Schuldt, A., Both, S., Bruelheide, H., Hardtle, W., Schmid, B., Zhou, H. Z., and Assmann, T. 2011. Predator diversity and abundance provide little support for the enemies hypothesis in forests of high tree diversity. PloS One, 6: 8. https://doi.org/10.1371/journal.pone.0022905 PMid:21829551 PMCid:PMC3145774 DOI: https://doi.org/10.1371/journal.pone.0022905

Sebastian, Z., and Ryszard, L. 2012. Biodiversity and structure of spider communities along a metal pollution gradient. Ecotoxicology, 21: 1523-1532. https://doi.org/10.1007/s10646-012-0906-3 PMid:22543960 PMCid:PMC3377894 DOI: https://doi.org/10.1007/s10646-012-0906-3

Selden, P. A., and Penney, D. 2010. Fossil spiders. Biol Rev, 85: 171-206. https://doi.org/10.1111/j.1469-185X.2009.00099.x PMid:19961468 DOI: https://doi.org/10.1111/j.1469-185X.2009.00099.x

Shannon, C. E., and Weiner, W. 1964. The mathematical theory of communication. University of Illinois Press, Urbana.

Sheldon, A. L. 1969. Equitability indices: Dependence on the species count. Ecology, 50(3): 466-467. https://doi.org/10.2307/1933900 DOI: https://doi.org/10.2307/1933900

Shen, T., Chao, A., and Lin, J. 2003. Predicting the number of new species in further taxonomic sampling. Ecology, 84: 798-804. https://doi.org/10.1890/0012-9658(2003)084[0798:PTNONS]2.0.CO;2 DOI: https://doi.org/10.1890/0012-9658(2003)084[0798:PTNONS]2.0.CO;2

Silva, D., and Coddington, J. A. 1996. Spiders of Pakitza (Madre de Dios, Peru): Species richness and notes on community structure. In: Wilson DE and Sandoval A (eds.). The Biodiversity of Southeastern Perú. Smithsonian Institution.

Simpson, E. H. 1949. Measurement of diversity. Nature, 163: 688. https://doi.org/10.1038/163688a0 DOI: https://doi.org/10.1038/163688a0

Singh, R. 2023. Biodiversity of the spider (Arachnida: Araneae) fauna of Tamil Nadu, India. Arthropods, 12(4): 193-250.

Singh, S., and Goswami, P. 2023. Seasonal diversity of spiders (Arachnida: Araneae) and collection methods in Barpeta district, Assam, India. J Adv Zool, 44(2): 233-239. https://doi.org/10.17762/jaz.v44i2.374 DOI: https://doi.org/10.17762/jaz.v44i2.374

Smitha, M. S., and Sudhikumar, A. V. 2020. A diversity of spiders (Arachnida: Araneae) from a cashew ecosystem in Kerala, India. J Threat Taxa, 12(13): 16879-16884. https://doi.org/10.11609/jott.5973.12.13.16879-16884 DOI: https://doi.org/10.11609/jott.5973.12.13.16879-16884

Sorensen, L. L. 2004. Composition and diversity of the spider fauna in the canopy of a montane forest in Tanzania. Biodivers Conserv, 13: 437-452. https://doi.org/10.1023/B:BIOC.0000006510.49496.1e DOI: https://doi.org/10.1023/B:BIOC.0000006510.49496.1e

Stojanowska, A., Rybak, J., Bożym, M., Olszowski, T., and Bihałowicz, J. S. 2020. Spider webs and lichens as bioindicators of heavy metals: A comparison study in the vicinity of a Copper Smelter (Poland). Sustainability, 1219(8066): 1-13. https://doi.org/10.3390/su12198066 DOI: https://doi.org/10.3390/su12198066

Stratton, G. E., Uetz, G. W., and Dillery, D. G. 1979. A comparison of the spiders of three coniferous tree species. J Arachnol, 6: 219-226.

Sugumaran, M. P., Soundararajan, R. P., and Lakshmanan, V. 2007. Spider fauna in the horticultural crops of Yercaud hills. Zoo’s Print J, 22(6): 2721-2722. https://doi.org/10.11609/JoTT.ZPJ.1598.2721-2 DOI: https://doi.org/10.11609/JoTT.ZPJ.1598.2721-2

Swenson, N. G. 2011. The role of evolutionary processes in producing biodiversity patterns, and the interrelationships between taxonomic, functional and phylogenetic biodiversity. Am J Bot, 98: 472-480. https://doi.org/10.3732/ajb.1000289 PMid:21613140 DOI: https://doi.org/10.3732/ajb.1000289

Thery, M., and Casas, J. 2002. Predator and prey views of spider camouflage. Nature, 415: 133. https://doi.org/10.1038/415133a PMid:11805822 DOI: https://doi.org/10.1038/415133a

Tikader, B. K. 1982. Family Araneidae (Argiopidae). Typical orb-weavers, Zoological Survey of India, 2: 1-293.

Tikader, B. K. 1980. Thomisidae (Crab-spiders). Fauna of India (Araneae), 1: 1-247.

Tikader, B. K. 1987. Handbook of Indian Spiders (Anon, Ed). Zoological Survey of India, Calcutta, 251.

Turnbull, A. L. 1973. Ecology of the true spiders (Araneomorphae). Annu Rev Entomol, 18: 305-348. https://doi.org/10.1146/annurev.en.18.010173.001513 DOI: https://doi.org/10.1146/annurev.en.18.010173.001513

Uetz, G. W. 1979a. The influence of variation in litter habitats on spider communities. Oecologia, 40: 29-42. https://doi.org/10.1007/BF00388808 PMid:28309601 DOI: https://doi.org/10.1007/BF00388808

Uetz, G. W. 1979b. The effect of flooding on floodplain arthropod distribution, abundance and community structure. Am Midl Nat, 101: 286-299. https://doi.org/10.2307/2424594 DOI: https://doi.org/10.2307/2424594

Uetz, G. W. 1975. Temporal and spatial variation in species diversity of wandering spiders (Araneae) in deciduous forest litter. Environ Entomol, 4: 719-724. https://doi.org/10.1093/ee/4.5.719 DOI: https://doi.org/10.1093/ee/4.5.719

Uetz, G. W. 1991. Habitat structure and spider foraging. In: Bell SS, Mccoy ED, Mushinsky HR (Eds.). Habitat structure: the physical arrangement of objects in space. Chapman and Hall. https://doi.org/10.1007/978-94-011-3076-9_16 DOI: https://doi.org/10.1007/978-94-011-3076-9_16

Uetz, G. W, Halaj, J., and Cady, A. B. 1999. Guild structure of spiders in major crops, J Arachnol, 27: 270-280.

Venner, S., and Casas, J. 2005. Spider webs designed for rare but life-saving catches. Proc R Soc B: Biol Sci, 272(1572): 1587-1592. https://doi.org/10.1098/rspb.2005.3114 PMid:16048774 PMCid:PMC1559834 DOI: https://doi.org/10.1098/rspb.2005.3114

Voigt, W. L., Perner, J., and Jones, T. H. 2007. Using functional groups to investigate community response to environmental changes: two grassland case studies. Glob Change Biol, 13: 1710-1721. https://doi.org/10.1111/j.1365-2486.2007.01398.x DOI: https://doi.org/10.1111/j.1365-2486.2007.01398.x

Weeks, R. D. J., and Holtzer, T. O. 2000. Habitat and season in structuring ground-dwelling spider (Araneae) communities in a shortgrass steppe ecosystem. Environ Entomol, 29: 1164-1172. https://doi.org/10.1603/0046-225X-29.6.1164 DOI: https://doi.org/10.1603/0046-225X-29.6.1164

Wheeler, W. C., Coddington, J. A., Crowley, L. M., Dimitrov, D., Goloboff, P. A., Griswold, C. E., Hormiga, G., Prendini, L., Ramírez, M. J., Sierwald, P., Almeida-Silva, L., Alvarez-Padilla, F., Arnedo, M. A., Silva, L. R. B., Benjamin, S. P., Bond, J. E., Grismado, C. J., Hasan, E., Hedin, M., Izquierdo, M. A., Labarque, F. M., Ledford, J., Lopardo, L., Maddison, W. P., Miller, J. A., Piacentini, L. N., Platnick, N. I., Polotow, D., Silva Dávila, D., Scharff, N., Szűts, T., Ubick, D., Vink, C. J., Wood, H. M., and Zhang, J. 2017. The spider tree of life: Phylogeny of Araneae based on target‐gene 521 analyses from an extensive taxon sampling. Cladistics, 33(6): 574-616. https://doi.org/10.1111/cla.12182 PMid:34724759 DOI: https://doi.org/10.1111/cla.12182

Wise, D. H. 1993. Spiders in ecological webs. Cambridge University, 328. https://doi.org/10.1017/CBO9780511623431 DOI: https://doi.org/10.1017/CBO9780511623431

Wise, D. H. 2004. Wandering spiders limit densities of a major microbe-detrivore in the forest floor food web. Pedobiologia, 48: 181-188. https://doi.org/10.1016/j.pedobi.2003.12.001 DOI: https://doi.org/10.1016/j.pedobi.2003.12.001

World Spider Catalog. 2023. World Spider Catalog. Version 24. Natural History Museum Bern. http://dx.doi.org/10.24436/2.

Yanoviak, S. P., Kragh, G., and Nadkarni, N. M. 2003. Spider assemblages in Costa Rican cloud forests: Effects of forest level and forest age. Stud Neotrop Fauna Environ, 38(2): 145-154. https://doi.org/10.1076/snfe.38.2.145.15922 DOI: https://doi.org/10.1076/snfe.38.2.145.15922

Ysnel, F., and Carnard, A. 2000. Spider diversity in connection with the vegetation structure and the foliage orientation of hedges. J Arachnol, 28: 107-114. https://doi.org/10.1636/0161-8202(2000)028[0107:SBICWT] 2.0.CO;2 DOI: https://doi.org/10.1636/0161-8202(2000)028[0107:SBICWT]2.0.CO;2

Zhang, J. T., Xu, B., and Li, M. 2013. Vegetation patterns and species diversity along elevational and disturbance gradients in the Baihua mountain reserve, Beijing, China, Mt Res Dev, 33(2): 170-178. https://doi.org/10.1659/MRD-JOURNAL-D-11-00042.1 DOI: https://doi.org/10.1659/MRD-JOURNAL-D-11-00042.1