In vitro evaluation of microencapsulated Bacillus thuringiensis exposed to different temperatures against Helicoverpa armigera (Hubner)

Jump To References Section

Authors

  • Department of Agricultural Entomology, COA, Bheemarayanagudi – 585287, Karnataka ,IN
  • Department of Agricultural Entomology, COA, Bheemarayanagudi – 585287, Karnataka ,IN
  • Department of Agricultural Entomology, COA, University of Agricultural Sciences, Raichur – 584104, Karnataka ,IN
  • Department of Agricultural Entomology, COA, University of Agricultural Sciences, Raichur – 584104, Karnataka ,IN
  • Department of Agricultural Entomology, COA, University of Agricultural Sciences, Raichur – 584104, Karnataka ,IN
  • Department of Biotechnology, Main Agricultural Research Station (MARS), Raichur – 584101, Karnataka ,IN

DOI:

https://doi.org/10.18311/jbc/2023/34762

Keywords:

Bacillus thuringiensis, Helicoverpa armigera, melanin, microencapsulation, para-aminobenzoic acid, UV protectants

Abstract

The experiment was conducted to prepare and evaluate microencapsulation of lyophilized Spore Crystal Aggregate (SCA) of native Bacillus thuringiensis isolate BGC-1 and standard isolate HD-1 against second instar larvae of Helicoverpa armigera at the Department of Agricultural Entomology, Bheemarayanagudi. The zetasizer analyzer results revealed that the microcapsule diameter ranged from 3.2 to 8.3 µm. Median lethal concentrations of the BGC-1 and Bt-HD1 were 0.66 g/l and 0.50 g/l, respectively. UV protectants viz., melanin and (PABA) para-amino benzoic acid were evaluated by exposing microencapsulated Bacillus thuringiensis to temperature regimes of 25°C, 30°C, 35°C, 40°C and 45°C in the B.O.D at different intervals of time. Among four microencapsulated formulations, BGC-1 with melanin recorded the highest mortality of 95 % at zero h exposure. As time increased, the mortality decreased and HD-1 was on par with BGC-1. HD-1 melanin showed significantly higher mortality of 62.50 to 92.50 % followed by BGC-1 (melanin) which ranged from 70 to 90 %. Even though formulations were exposed to different temperatures, because of encapsulation, potential to cause insect mortality was retained.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-12-31

How to Cite

AKSHAYA KUMAR, K., KALMATH, B. S., HADIMANI, D. K., PRABHURAJ, A., MALLIKARJUNA, S., & KISAN, B. (2023). <i>In vitro</i> evaluation of microencapsulated <i>Bacillus thuringiensis</i> exposed to different temperatures against <i>Helicoverpa armigera</i> (Hubner). Journal of Biological Control, 37(4), 208–219. https://doi.org/10.18311/jbc/2023/34762

Issue

Section

Research Articles
Received 2023-08-16
Accepted 2024-01-04
Published 2023-12-31

 

References

Bashir, O., Jerome, P. C., Pierre, L., and Charles, V. 2016. Controlled-release of Bacillus thuringiensis formulations encapsulated in light resistant colloidosomal microcapsules for the management of lepidopteran pests of Brassica crops. Peer J, 4: Article 2524. https://doi.org/10.7717/peerj.2524 PMid:27761325 PMCid:PMC5068393 DOI: https://doi.org/10.7717/peerj.2524

Brar, S. K., Verma, M., Tyagi, R. D., and Vale, J. R. 2006. Recent advances in downstream processing and formulations of Bacillus thuringiensis based biopesticides. Process Biochem, 4: 323-342. https://doi. org/10.1016/j.procbio.2005.07.015 DOI: https://doi.org/10.1016/j.procbio.2005.07.015

Cokmus, C., and Elcin, Y. M. 1995. Stability and controlled release properties of carboxymethylcellulose-encapsulated Bacillus thuringiensis var. israelensis. Pestic Sci, 45(4): 351-355. https://doi.org/10.1002/ps.2780450409 DOI: https://doi.org/10.1002/ps.2780450409

Devi, P. S. V., and Vineela, V. 2014. Suspension concentrate formulation of Bacillus thuringiensis var. kurstaki for effective management of Helicoverpa armigera on sunflower (Helianthus annuus). Biocontrol Sci Technol, 25(3):329-336. https://doi.org/10.1080/09583157.2014.977846s DOI: https://doi.org/10.1080/09583157.2014.977846

Elcin, Y. M. 1995. Bacillus sphaericus 2362-calcium alginate microcapsules for mosquito control. Enzyme Microb Technol,17: 587-591. https://doi.org/10.1016/0141-0229(94)00026-N DOI: https://doi.org/10.1016/0141-0229(94)00026-N

Garica, G., Hector, M., Ibarra, R., and Barrera. 2011. Small microcapsules of crystal proteins and spores of Bacillus thuringiensis by an emulsification /internal gelatin method. Bioprocess Biosyst Eng, 34: 701-708. https://doi.org/10.1007/s00449-011-0519-x PMid:21344251 DOI: https://doi.org/10.1007/s00449-011-0519-x

Gifania, A., Marzbanb, R., Aliakbar, S., Mehdi, A., and Ahmad, D. 2015. Ultraviolet protection of nucleopolyhedrovirus through microencapsulation with different polymers. Biocontrol Sci Technol, 25(7): 814-827. https://doi.org/10.1080/09583157.2015.1018814 DOI: https://doi.org/10.1080/09583157.2015.1018814

Gill, S. S., Cowles, E. A., and Pietrantonio, P. V. 1992. The mode of action of Bacillus thuringiensis endotoxin, Ann Rev Entomol, 37: 615-636. https://doi.org/10.1146/annurev.en.37.010192.003151 PMid:1311541 DOI: https://doi.org/10.1146/annurev.en.37.010192.003151

Glare, T. R., and Callaghan, M. O. 2000. Bacillus thuringiensis: Biology, ecology and safety. Chichester: John Wiley and Sons, Ltd.

Gonsalves, J. K. M. C., Costa, A. M. B., Sousa, D. P., Cavalcanti, S. C. H., and Nunes, R. S. 2009. Microencapsulaçao do oleo essencial de Citrus sinensis (L.) Osbeck pelo metodo da coacervaçao simples. Scientia Plena, 5(11): 1-8.

Griego, V. M., and Spence, K. D. 1978. Inactivation of Bacillus thuringiensis spores by ultraviolet and visible light. Appl Environ Microbiol, 35(5): 906-910. https://doi.org/10.1128/aem.35.5.906-910.1978 PMid:655707 PMCid:PMC242951 DOI: https://doi.org/10.1128/aem.35.5.906-910.1978

Gujar, G. T., Vinay, K., Archana, K., Kalia, V., and Kumari, A. 2000. Bioactivity of Bacillus thuringiensis against the Helicoverpa armigera (Hubner). Annals Plant Prot Sci, 8: 125-131.

Gujar, T., Kalia, V., Kumari, A., and Prasad, T. V. 2004. Potentiation of insecticidal activity of Bacillus thuringiensis ssp. kurstaki HD-1 by proteinase inhibitors in the American bollworm, Helicoverpa armigera (Hubner). Indian J Exp Bio, 42(2): 157-163.

Haggag, K. H., and Yousef, H. M. A. 2010. Differentiation among Egyptian Bacillus thuringiensis strains at sporulation by whole cellular protein profiles. World J Agric Sci, 6(1): 224-233.

Huang, K. S., Liu, M. K., Wu, C. H., Yen, Y. T., and Lin, Y. C. 2007. Calcium alginate microcapsule generation on a microfluidic system fabricated using the optical disk process. J Micromech Microeng, 17: 1428-1434. https://doi.org/10.1088/0960-1317/17/8/003 DOI: https://doi.org/10.1088/0960-1317/17/8/003

Khorramvatan, S., Marzbanb, R., Ardjmandc, M., Safekordia, A., and Askaryb, H. 2017. The effect of polymers on the stability of microencapsulated formulations of Bacillus thuringiensis ssp. kurstaki (Bt-KD2) after exposure to Ultra Violet Radiation. Biocontrol Science and Technolog, 24(4): 462-472. https://doi.org/10.1080/09583157.2013.871503 DOI: https://doi.org/10.1080/09583157.2013.871503

Lalitha, C., Muralikrishna, T., Sravani, S., and Devaki, K. 2012. Laboratory evaluation of native Bacillus thuringiensis isolates against second and third instar Helicoverpa armigera (Hubner) larvae. J Biopest, 5(1): 4-9.

Myasnik, M., Manasherob, R., Ben-Dov, E., Zaritsky, A., Margalith, Y., and Barak, Z. 2001. Comparative Sensitivity to uv-b radiation of two Bacillus thuringiensis Subspecies and other Bacillus sp. Curr Microbiol, 43(2): 140-143. https://doi.org/10.1007/s002840010276 PMid:11391479 DOI: https://doi.org/10.1007/s002840010276

Poncelet, D., Lencki, R., Beaulieu, C., Halle, J. P., Neufeld, R. J., and Fournier, A. 1992. Production of alginate beads by emulsification/internal gelation. Methodology Appl Microbiol Biotechnol, 38: 39-45. https://doi.org/10.1007/BF00169416 PMid:1369009 DOI: https://doi.org/10.1007/BF00169416

Praveen, D. T. 2014. Characterization of native Bacillus thuringiensis (Berliner) isolates from different cropping ecosystem, [M. Sc. Thesis, University of Agricultural Sciences, Raichur., Karnartaka

Samsonova, P. D. L., Padron, R. I. V., Pardo, C. A., Cabrera, J. G., and Lariva, G. A. 1997. Bacillus thuringiensis: From biodiversity to biotechnology. J Indian Microbiol Biotechnol, 19: 202-219. https://doi.org/10.1038/sj.jim.2900460 PMid:9418060 DOI: https://doi.org/10.1038/sj.jim.2900460

Saroja, Basavaraj, K., Bheemanna, M., and Prabhuraj, A. 2018. Evaluation of UV protectants for wettable powder formulation of native Bacillus thuringiensis (Berliner) isolate against Helicoverpa armigera (Hubner) in the laboratory, J Biol Control, 32(3): 179-186. DOI: https://doi.org/10.18311/jbc/2018/21661

Sopena, F., Maqueda, C., and Morillo, E. 2009. Controlled release formulations of herbicides based on micro-encapsulation. Cienc Investig Agrar, 35(1): 27-42. https://doi.org/10.4067/S0718-16202009000100002 DOI: https://doi.org/10.4067/S0718-16202009000100002

Xavier, R., Nagarathinam, P., Gopalakrishnan, Murugan, V., and Jayaraman, K. 2007. Isolation of lepidopteran active native Bacillus thuringiensis strains through PCR planning. Asia Pac J Mol Biol Biotechnol, 15(2): 61-67.

Most read articles by the same author(s)