Characterization of novel strains of Trichoderma spp. and their utilization in management of damping off disease in tomato

Jump To References Section

Authors

  • Department of Plant Pathology, of Agriculture, Vellayani, Thiruvananthapuram - 695522, Kerala ,IN
  • Regional Agricultural Research Station, Kumarakom, Kottayam - 686563, Kerala ,IN
  • Department of Plant Pathology, of Agriculture, Vellayani, Thiruvananthapuram - 695522, Kerala ,IN
  • Department of Plant Pathology, College of Agriculture, Vellayani, Thiruvananthapuram - 695522, Kerala ,IN
  • Farming Systems Research Station, Sadanandapuram, Kollam - 691531, Kerala ,IN
  • Department of Plant Pathology, College of Agriculture, Padannakkad, Kasaragod - 671314, Kerala ,IN
  • Department of Plant Biotechnology, College of Agriculture, Vellayani, Thiruvananthapuram - 695522, Kerala ,IN

DOI:

https://doi.org/10.18311/jbc/2022/30015

Keywords:

Trichoderma, Pythium, ITS, Biocontrol, damping off, Fusarium oxysporum, Pythium aphanidermatum, Trichoderma, wilt
Biocontrol

Abstract

Chemical fungicides used in plant disease management may have deteriorative effects on humans, animals, and the environment. The use of native strains of Trichoderma spp. against plant diseases may help to reduce the dependence on chemical fungicides. In this study, eleven novel isolates of Trichoderma spp. from virgin forest soils of different agro-climatic zones of Kerala were characterized and evaluated for their efficacy against damping off disease of tomato caused by Pythium aphanidermatum under in vitro and in vivo; and also, against wilt pathogen, Fusarium oxysporum under in vitro conditions. Dual culture assay showed that all the Trichoderma isolates were found to inhibit the growth of P. aphanidermatum and F. oxysporum under in vitro conditions with multiple modes of action. The mycelial colour, texture, and conidial characters varied among all the isolates. The volatile metabolites by isolates of Trichoderma spp. also showed in vitro inhibition of the pathogens. Seed treatment (20 g kg-1) and potting medium addition @ 2 % (w/w) of isolates TRMW-2, TRKR-2, TRPN-3, TRPN-11 and TRPN-17 could effectively reduce pre- and post-emergence damping off of tomato. Among them, isolates TRMW-2, TRKR-2, and TRPN-11 were the most effective ones in reducing pre- and post-emergence damping off to about 72 and 90 percent respectively. Molecular identification of the isolates of Trichoderma spp. using ITS universal primers revealed similarity with certain reference strains of the NCBI Genbank database.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-12-14

How to Cite

Nair, A., Varghese, S. G., Cyriac, A., Thara, S., Michal Johnson, J., Subramanian, R., & KB, S. (2022). Characterization of novel strains of <i>Trichoderma</i> spp. and their utilization in management of damping off disease in tomato. Journal of Biological Control, 36(1), 31–46. https://doi.org/10.18311/jbc/2022/30015

Issue

Section

Research Articles
Received 2022-04-21
Accepted 2022-12-08
Published 2022-12-14

 

References

Agrios GN. 2005. Plant Pathology. Academic Press, London.

Bhattacharjee R, Dey U. 2014. An overview of fungal and bacterial biopesticides to control plant pathogens/ diseases. Afr J Microbiol Res, 8:1749-1762. https://doi. org/10.5897/AJMR2013.6356 DOI: https://doi.org/10.5897/AJMR2013.6356

Campanile G, Ruscelli A, Luisi N. 2007. Antagonistic activity of endophytic fungi towards Diplodia corticola assessed by in vitro and in planta tests. Eur J Plant Pathol, 117(3):237-246. https://doi.org/10.1007/s10658-006- 9089-1 DOI: https://doi.org/10.1007/s10658-006-9089-1

Chakraborty BN, Chakraborty U, Saha A, Dey PL, Sunar K. 2010. Molecular characterization of Trichoderma viride and Trichoderma harzianum isolated from soils of North Bengal based on rDNA markers and analysis of their PCR-RADP profiles. Global J Biotechnol Biochem, 5:55-61.

Chao Wang, Zhuang WY. 2019. Evaluating effective Trichoderma isolates for biocontrol of Rhizoctonia solani causing root rot of Vigna unguiculata. J Integr Agric, 18(9):2072-2079. https://doi.org/10.1016/S2095- 3119(19)62593-1 DOI: https://doi.org/10.1016/S2095-3119(19)62593-1

Chet I, Baker R. 1981. Isolation and biocontrol potential of Trichoderma hamatum from soil naturally suppressive to Rhizoctonia solani. Phytopathol, 71:286-290. https:// doi.org/10.1094/Phyto-71-286 DOI: https://doi.org/10.1094/Phyto-71-286

Cyriac A, Sible GV, Johnson JM, Radhika NS, Krishnan AG. 2021. Antagonistic efficacy of Trichoderma isolates against soil-borne plant pathogens, Pythium aphanidermatum and Rhizoctonia solani. J Biol Control, 35(2): 48-56. https://doi.org/10.18311/jbc/2021/26283 DOI: https://doi.org/10.18311/jbc/2021/26283

Das M, Haridas, M, Sabu A. 2018. Biological control of black pepper and ginger pathogens, Fusarium oxysporum, Rhizoctonia solani and Phytophthora capsici, using Trichoderma spp. Biocatal Agric Biotechnol, 17:177- 183. https://doi.org/10.1016/j.bcab.2018.11.021 DOI: https://doi.org/10.1016/j.bcab.2018.11.021

Dennis C, Webster J. 1971a. Antagonistic properties of species-group of Trichoderma. III. Hyphal interactions. Trans Br Mycol Soc, 57:363-369. https://doi. org/10.1016/S0007-1536(71)80050-5 DOI: https://doi.org/10.1016/S0007-1536(71)80050-5

Dennis C, Webster J. 1971b. Antagonistic properties of species groups of Trichoderma: II. Production of non-volatile antibiotics. Trans Br Mycol Soc, 57:41-47. https://doi.org/10.1016/S0007-1536(71)80078-5 DOI: https://doi.org/10.1016/S0007-1536(71)80078-5

Drummond AJ, Suchard MA. 2010. Bayesian random local clocks, or one rate to rule them all. BMC Biol, 8(1):1-12. https://doi.org/10.1186/1741-7007-8-114 PMid:20807414 PMCid:PMC2949620 DOI: https://doi.org/10.1186/1741-7007-8-114

Elad Y. 2000. Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Prot, 19:709-714. https://doi.org/10.1016/ S0261-2194(00)00094-6 DOI: https://doi.org/10.1016/S0261-2194(00)00094-6

Elad Y, Chet I, Henis Y. 1981. Biological control of Rhizoctonia solani in strawberry fields by Trichoderma harzianum. Plant Soil, 60:245-254. https://doi. org/10.1007/BF02374109 DOI: https://doi.org/10.1007/BF02374109

Elshahawy, IE, El-Mohamedy RS. 2019. Biological control of Pythium damping-off and root-rot diseases of tomato using Trichoderma isolates employed alone or in combination. J Plant Pathol, 101(3):597-608. https:// doi.org/10.1007/s42161-019-00248-z DOI: https://doi.org/10.1007/s42161-019-00248-z

Eziashi EI, Uma NU, Adekunle AA, Airede CE. 2006. Effect of metabolites produced by Trichoderma species against Ceratocystis paradoxa in culture medium. Afr J Biotechnol, 5(9):703-706. https://doi.org/10.3923/ pjbs.2006.1987.1990 DOI: https://doi.org/10.3923/pjbs.2006.1987.1990

Hajieghrari B, Torabi-Giglou M, Mohammadi MR, Davari M. 2008. Biological potential of some Iranian Trichoderma isolates in the control of soil borne plant pathogenic fungi. Afr J Biotechnol, 7:967-972.

Harman GE, Chet I, Baker R. 1980. Trichoderma hamatum on seedling disease induced in radish and pea by Pythium spp. or Rhizoctonia solani. Phytopathol, 70:1107-1172. https://doi.org/10.1094/Phyto-70-1167 DOI: https://doi.org/10.1094/Phyto-70-1167

Harman GE. 2000. Myths and dogmas of biocontrol: changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis, 84:377-393. https://doi. org/10.1094/PDIS.2000.84.4.377 PMid:30841158 DOI: https://doi.org/10.1094/PDIS.2000.84.4.377

Hassan MM, Gaber A, El-Hallous EI. 2014. Molecular and morphological characterization of Trichoderma harzianum from different Egyptian soils. Wulfenia J, 21:80-96.

Hassan MM, Farid MA, Gaber A. 2019. Rapid identification of Trichoderma koningiopsis and Trichoderma longibrachiatum using sequence characterized amplified region markers. Egyptian J Biol Pest Cont, 29:13. https://doi.org/10.1186/s41938-019-0113-0 DOI: https://doi.org/10.1186/s41938-019-0113-0

Inbar J, Abramsky M, Cohen D. 1994. Plant growth enhancement and disease control by T. harzianum in vegetable seedlings grown under commercial conditions. Eur J Plant Pathol, 100:337-346. https://doi. org/10.1007/BF01876444 DOI: https://doi.org/10.1007/BF01876444

Jaisani P, Pandey RN. 2017. Morphological and molecular characterization for identification of isolates of Trichoderma spp. from rhizosphere soils of crops in middle Gujarat. Indian Phytopathol, 70(2):238-245. https://doi.org/10.24838/ip.2017.v70.i2.71652 DOI: https://doi.org/10.24838/ip.2017.v70.i2.71652

Kamala T, Indira S. 2011. Evaluation of indigenous Trichoderma isolates from Manipur as biocontrol agent against Pythium aphanidermatum on common beans. Biotechnol, 1:217-225. https://doi.org/10.1007/s13205- 011-0027-3 PMid:22558540 PMCid:PMC3339598 DOI: https://doi.org/10.1007/s13205-011-0027-3

Karmel RA, Muthukumar A. 2019. Occurrence, virulence and pathogenicity of Pythium aphanidermatum causing tomato damping-off. Pl Arch. 19(2):2476-2480

Karpagavalli S, Ramabadran R. 2001. Effect of fungicides and Trichoderma species on cellulolytic enzyme production, damping-off incidence and seedling vigour of tomato. Pl Dis Res, 16:179-185.

Kucuk C, Kivanc M. 2004. In vitro antifungal activity of strains of Trichoderma harzianum. Turk J Biol. 28:111- 115.

Kullnig-Gradinger CM, Szakacs G, Kubicek CP. 2002. Phylogeny and evolution of the genus Trichoderma: A multigene approach. Mycol Res, 106:757 -767. https:// doi.org/10.1017/S0953756202006172 DOI: https://doi.org/10.1017/S0953756202006172

MacHardy, WE, Beckman, CH. 1981. Vascular wilt Fusaria: Infections and pathogenesis. In: Nelson PE, Toussoun TA, Cook RJ, editors. Fusarium: Diseases, biology and taxonomy. The Pennsylvania State University Press, University Park, Pennsylvania.

Mazrou YSA, Makhlouf AH, Elseehy MM, Awad MF, Hassan MM. 2020. Antagonistic activity and molecular characterisation of biological control agent Trichoderma harzianum from Saudi Arabia. Egyptian J Biol Pest Control, 30:4. https://doi.org/10.1186/s41938-020- 0207-8 DOI: https://doi.org/10.1186/s41938-020-0207-8

Mbarga JB, Ten Hoopen GM, Kuaté J, Adiobo A, Ngonkeu MEL, Ambang Z, Begoude BAD. 2012. Trichoderma asperellum: A potential biocontrol agent for Pythium myriotylum, causal agent of cocoyam (Xanthosoma sagittifolium) root rot disease in Cameroon. Crop Prot, 36:18-22. https://doi.org/10.1016/j.cropro.2012.02.004 DOI: https://doi.org/10.1016/j.cropro.2012.02.004

Mendoza JLH, Perez MIS, Prieto JMG, Velasquez JDQ, Olivares JGG, Langarica HRG. 2015. Antibiosis of Trichoderma spp. strains native to north eastern Mexico against the pathogenic fungus Macrophomina phaseolina. Braz J Microbiol, 46(4):1093-1101. https://doi.org/10.1590/S1517-838246420120177 PMid:26691467 PMCid:PMC4704620 DOI: https://doi.org/10.1590/S1517-838246420120177

Mishra VK. 2010. In vitro antagonism of Trichoderma species against Pythium aphanidermatum. J Phytol, 2:28-35.

Pakora GA, Mpika J, Kone J, Daouda DM, Kebe I, Nay B, Buisson D. 2017. Inhibition of Phytophthora species, agents of cocoa black pod disease, by secondary metabolites of Trichoderma species. Environ Sci Pollut Res, 25:29901-29909. https://doi.org/10.1007/s11356- 017-0283-9 PMid:28965291 DOI: https://doi.org/10.1007/s11356-017-0283-9

Pandya JR, Sabalpara AN, Chawda SK. 2011. Trichoderma: a particular weapon for biological control of phytopathogens. J Agric Sci Technol, 7(5):1187-1191.

Ray K, Sen K, Ghosh PP, Barman AR, Mandal R, De Roy M, Dutta S. 2017. Dynamics of Sclerotium rolfsii as influenced by different crop rhizosphere and microbial community. J Appl Nat Sci, 9(3):1544-1550. https://doi. org/10.31018/jans.v9i3.1399 DOI: https://doi.org/10.31018/jans.v9i3.1399

Riddel RW. 1950. Slide cultures. Mycologica, 42:265-270. https://doi.org/10.1080/00275514.1950.12017830 DOI: https://doi.org/10.1080/00275514.1950.12017830

Sathiyavathi M, Parvatham R. 2011. Identification and molecular characterization of laccase and xylanase producing fungus isolated from paper mill effluent. Int J Pharma Biosci, 2(4): 54-66.

Segarra G, Aviles M, Casanova E, Borrero C, Trillas I. 2013. Effectiveness of biological control of Phytophthora capsici in pepper by Trichoderma asperellum strain T34. Phytopathol Mediterr, 1(52):77-83.

Sekhar YC, Ahammed SK, Prasad TNVKV, Devi RSJ. 2017. Identification of Trichoderma species based on morphological characters isolated from rhizosphere of groundnut (Arachis hypogaea, L.). Int J Sci Environ Technol, 6:2056-2063.

Shahid M, Srivastava M, Sharma A, Kumar V, Pandey S, Singh A. 2013. Morphological, molecular identification and SSR marker analysis of a potential strain of Trichoderma/ Hypocrea for production of a bioformulation. J Plant Pathol Microbiol, 4:1-7 https://doi.org/10.4172/2157- 7471.1000204

Shalini S, Kotasthane AS. 2007. Parasitism of Rhizoctonia solani by strains of Trichoderma spp. EJEAF Chem, 6:2272-81.

Singh P, Kumar A, Singh Y, Mishra SK, Kumar B. 2020. Assessment of morphological and molecular variability among different isolates of Trichoderma. J Experimental Biol Agric Sci, 8(1):41-47. https://doi. org/10.18006/2020.8(1).41.47 DOI: https://doi.org/10.18006/2020.8(1).41.47

Sivan A, Chet I. 1993. Integrated control of media on growth and interactions between a range of soil borne glasshouse pathogens and antagonistic fungi. Phytopathol, 10:127- 142.

Skidmore AM, Dickinson CH. 1976. Colony interaction and hyphal interference between Septoria nodorum and phylloplane fungi. Trans Br Mycol Soc, 66:57-64. https://doi.org/10.1016/S0007-1536(76)80092-7 DOI: https://doi.org/10.1016/S0007-1536(76)80092-7

Spadaro D, Gullino ML. 2005. Improving the efficacy of biocontrol agents against soil-borne pathogens. Crop Prot. 24:601-613. https://doi.org/10.1016/j. cropro.2004.11.003 DOI: https://doi.org/10.1016/j.cropro.2004.11.003

Tchameni SN, Cotârleț M, Ghinea IO, Bedine MAB, Sameza ML, Borda D, Bahrim G, DinicăRM. 2019. Involvement of lytic enzymes and secondary metabolites produced by Trichoderma spp. in the biological control of Pythium myriotylum. Int Microbiol, 23(2): 179-188. https://doi. org/10.1007/s10123-019-00089-x PMid:31267375 DOI: https://doi.org/10.1007/s10123-019-00089-x

White TJ, Bruns T, Lee S, Taylor JW. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR Protocols: A Guide to Methods and Applications. Academic Press Inc., New York. https://doi.org/10.1016/B978-0-12-372180-8.50042-1 PMid:1696192 DOI: https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Wright JM. 1956. Biological control of soil-borne Pythium infection by seed inoculation. Plant Soil, 8:132-140. https://doi.org/10.1007/BF01398815 DOI: https://doi.org/10.1007/BF01398815