Trichoderma spp. intervened activation of defensive enzymes in Musa paradisiaca cv. Malnad Rasbale plantlets

Jump To References Section

Authors

  • Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankaraghatta, Karnataka - 577451 ,IN
  • Kuvempu University, Shankaraghatta, Karnataka - 577451 ,IN
  • Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankaraghatta, Karnataka - 577451 ,IN
  • Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankaraghatta, Karnataka - 577451 ,IN
  • Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankaraghatta, Karnataka - 577451 ,IN
  • Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankaraghatta, Karnataka - 577451 ,IN
  • Department of PG Studies and Research in Biotechnology, Kuvempu University, Shankaraghatta, Karnataka - 577451 ,IN

DOI:

https://doi.org/10.18311/jbc/2022/29329

Keywords:

Antagonism, biocontrol, Fusarium wilt, Musa paradisiaca, Trichoderma
Plant Tissue culture, Microbiology

Abstract

Fusarium oxysporium f. sp. cubense (Foc) race is an archetypally soil-born fungus causing chief fiscal damage to farmers growing banana plants. Supervising Foc is attained by the habit of chemical fungicides which undesirably harm the soil fertility. Our investigations intended to activate the aptitude of Trichoderma strains for activation of PGPR and IIR. The activation and accretion of defence enzymes such as Polyphenol Oxidase (PPO), Phenylalanine Ammonia-Lyase (PAL) and Peroxidase (PO) are been amplified by inoculation, and treatment with a combination of Trichoderma harzanium and Trichoderma viride strains (T3-H1+V1). Besides combination-based inoculum treatments gave best results than individual and fungicide-treated plantlets for supervising Foc pathogenesis. Based on the results we conclude that usage of T1-H1 and T2-H2 treatments with a combination such as T3-H1+V1 gave promising results and can be used as a prominent biocontrol formulation for inducing defence enzymes and PGPR in Musa paradisica cv. Malnad Rasbale.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-02-03

How to Cite

S. Ullas Prasanna, V. Krishna, S. Ravi Kumar, N. M. Vinay Kumar, Nayaka, S. S., K. Raagavalli, & S. Ajith. (2023). <i>Trichoderma</i> spp. intervened activation of defensive enzymes in <i>Musa paradisiaca</i> cv. Malnad Rasbale plantlets. Journal of Biological Control, 36(2&amp;3), 101–111. https://doi.org/10.18311/jbc/2022/29329

Issue

Section

Research Articles
Received 2022-01-14
Accepted 2022-12-21
Published 2023-02-03

 

References

Bansal R, Gupta GD, Mukherjee PK. 2021. A Translationally Controlled Tumor Protein (TCTP) is involved in growth and antagonistic behaviour of Trichoderma virens. Physiol Mol Plant Pathol, 114: 101605. https://doi.org/10.1016/j.pmpp.2021.101605 DOI: https://doi.org/10.1016/j.pmpp.2021.101605

Benítez T, Rincón AM, Limón MC, Codon AC. 2004. Biocontrol mechanisms of Trichoderma strains. Int Microbiol, 7(4): 249-260.

Bhagwat B, Duncan EJ. 1998. Mutation breeding of banana cv. Highgate (Musa spp., AAA Group) for tolerance to Fusarium oxysporum f. sp. cubense using chemical mutagens. Sci Hortic, 73(1): 11-22. https://doi.org/10.1016/S0304-4238(97)00141-6 DOI: https://doi.org/10.1016/S0304-4238(97)00141-6

Calvet C, Pera J, Barea JM.1990. Interactions of Trichoderma spp. with Glomus mosseae and two wilt pathogenic fungi. Agric Ecosyst Environ, 29(1-4): 59-65. https://doi.org/10.1016/0167-8809(90)90255-C DOI: https://doi.org/10.1016/0167-8809(90)90255-C

Crump DH. 1998. Biological control of potato and beet cyst nematodes. Asp Appl Biol, 52: 383-386.

De Ascensao AR, Dubery IA. 2000. Panama disease: Cell wall reinforcement in banana roots in response to elicitors from Fusarium oxysporum f. sp. cubense race four. Phytopathology, 90(10): 1173-1180.https://doi.org/10.1094/PHYTO.2000.90.10.1173 PMid:18944483 DOI: https://doi.org/10.1094/PHYTO.2000.90.10.1173

Dennis C, Webster J. 1971. Antagonistic properties of species-groups of Trichoderma: I. Production of non-volatile antibiotics. Trans Br Mycol Soc, 57(1): 25. https://doi.org/10.1016/S0007-1536(71)80077-3 DOI: https://doi.org/10.1016/S0007-1536(71)80077-3

Dickerson DP, Pascholati SF, Hagerman AE, Butler LG, Nicholson RL. 1984. Phenylalanine ammonialyase and hydroxycinnamate: CoA ligase in maize mesocotyls inoculated with Helminthosporium maydis or Helminthosporium carbonum. Physiol Plant Pathol, 25(2): 111-123. https://doi.org/10.1016/0048-4059(84)90050-X DOI: https://doi.org/10.1016/0048-4059(84)90050-X

Dowd C, Wilson IW, McFadden H. 2004. Gene expression profile changes in cotton root and hypocotyl tissues in response to infection with Fusarium oxysporum f. sp. vasinfectum. Mol Plant Microbe, 17(6): 654-667. https://doi.org/10.1094/MPMI.2004.17.6.654 PMid:15195948 DOI: https://doi.org/10.1094/MPMI.2004.17.6.654

Fadden HM, Chapple R, Feyter RD, Dennis E. 2001. Expression of pathogenesis-related genes in cotton stems in response to infection by Verticillium dahliae. Physiol Mol Plant Pathol, 58(3): 119-131. https://doi.org/10.1006/pmpp.2001.0320 DOI: https://doi.org/10.1006/pmpp.2001.0320

Fishal EMM, Meon S, Yun WM. 2010. Induction of tolerance to Fusarium wilt and defense-related mechanisms in the plantlets of susceptible berangan banana pre-inoculated with Pseudomonas sp. (UPMP3) and Burkholderia sp. (UPMB3). Agricultural Sciences in China, 9(8): 1140-1149. https://doi.org/10.1016/S1671-2927(09)60201-7 DOI: https://doi.org/10.1016/S1671-2927(09)60201-7

Galletti S, Paris R, Cianchetta S. 2020. Selected isolates of Trichoderma gamsii induce different pathways of systemic resistance in maize upon Fusarium verticillioides challenge. Microbiol. Res., 233, p. 126406. https://doi.org/10.1016/j.micres.2019.126406 PMid:31883486 DOI: https://doi.org/10.1016/j.micres.2019.126406

Gopalakrishnan S, Humayun P, Kiran BK, Kannan IGK, Vidya MS, Deepthi K, Rupela O. 2011. Evaluation of bacteria isolated from rice rhizosphere for biological control of charcoal rot of sorghum caused by Macrophomina phaseolina (Tassi) Goid. World J. Microbiol. Biotechnol, 27(6): 1313-1321. https://doi.org/10.1007/s11274-010-0579-0 PMid:25187130 DOI: https://doi.org/10.1007/s11274-010-0579-0

Jarwar U, Gadhi MA, Nizamani ZA, Abro SA, Kumar R, Bhatti TA, Soomro AH, Jiskani AM. 2021. In-Vitro efficacy of different fungicides against leaf spot of marigold caused by Alternaria alternata. Mehrgarh J Sci Tech, 1(1): 1-4. https://doi.org/10.52861/mhjst.2021.1.1.2 DOI: https://doi.org/10.52861/mhjst.2021.1.1.1

Kavino M, Harish S, Kumar N, Saravanakumar D, Samiyappan R. 2008. Induction of systemic resistance in banana (Musa spp.) against Banana Bunchy Top Virus (BBTV) by combining chitin with root-colonizing Pseudomonas fluorescens strain CHA0. Eur J Plant Pathol, 120(4): 353-362. https://doi.org/10.1007/s10658-007-9223-8 DOI: https://doi.org/10.1007/s10658-007-9223-8

Kavino M, Kumar N, Damodaran T, Harish S, Saravanakumar D. 2009. Biochemical markers as a useful tool for the early identification of Fusarium oxysporum f. sp. cubense, race 1 resistance banana clones. Arch Phytopathol Plant Prot, 42(11): 1069-1078. https://doi.org/10.1080/03235400701622089 DOI: https://doi.org/10.1080/03235400701622089

Kidane EG, Laing MD. 2008. October. Integrated control of Fusarium wilt of banana (Musa spp.). In IV International Symposium on Banana: International Conference on Banana and Plantain in Africa: Harnessing International, 879 (pp. 315-321). https://doi. org/10.17660/ActaHortic.2010.879.32 DOI: https://doi.org/10.17660/ActaHortic.2010.879.32

Krishna V, Kumar KG, Pradeepa K, Kumar SR, Kumar RS. 2013. Biochemical markers assisted screening of Fusarium wilt resistant Musa paradisiaca (L.) cv. puttabale micropropagated clones.

Lakshmanan P, Selvaraj P, Mohan S. 1987. Efficacy of different methods for the control of Panama disease. Trop Pest Manag, 33(4): 373–374 https://doi.org/10.1080/09670878709371187 DOI: https://doi.org/10.1080/09670878709371187

Manganiello G, Sacco A, Ercolano MR, Vinale F, Lanzuise S, Pascale A, Napolitano M, Lombardi N, Lorito M, Woo SL. 2018. Modulation of tomato response to Rhizoctonia solani by Trichoderma harzianum and its secondary metabolite harzianic acid. Front Microbiol, 9. https://doi.org/10.3389/fmicb.2018.01966 PMid:30233507 PMCid:PMC6127634 DOI: https://doi.org/10.3389/fmicb.2018.01966

Matsumoto K, Barbosa ML, Souza LAC, Teixeira JB. 1995. Race 1 fusarium wilt tolerance on banana plants selected by fusaric acid. Euphytica, 84(1): 67-71. https://doi.org/10.1007/BF01677558 DOI: https://doi.org/10.1007/BF01677558

Mayer AM, Harel E, Ben-Shaul R. 1966. Assay of catechol oxidase-a critical comparison of methods. Phytochemistry, 5(4): 783-789. https://doi.org/10.1016/S0031-9422(00)83660-2 DOI: https://doi.org/10.1016/S0031-9422(00)83660-2

Mayo S, Cominelli E, Sparvoli F, González-López O, Rodríguez-González A, Gutiérrez S, Casquero PA. 2016. Development of a qPCR strategy to select bean genes involved in plant defense response and regulated by the Trichoderma velutinum-Rhizoctonia solani interaction. Front Plant Sci, 7: 1109. https://doi.org/10.3389/fpls.2016.01109 PMCid:PMC4973505 DOI: https://doi.org/10.3389/fpls.2016.01109

Mendes R, Kruijt M, De Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM. 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science, 332(6033): 1097-1100. https://doi.org/10.1126/science.1203980 PMid:21551032 DOI: https://doi.org/10.1126/science.1203980

Mohammed AM, AL-Ani LK, Bekbayeva L, Salleh B. 2011. Biological control of Fusarium oxysporum f. sp. cubense by Pseudomonas fluorescens and BABA in vitro. World Appl Sci J, 15(2): 189-191.

Mukherjee PK, Hurley JF, Taylor JT, Puckhaber L, Lehner S, Druzhinina I, Schumacher R, Kenerley CM., 2018. Ferricrocin, the intracellular siderophore of Trichoderma virens, is involved in growth, conidiation, gliotoxin biosynthesis and induction of systemic resistance in maize. Biochem Biophys Res Commun, 505(2): 606-611. https://doi.org/10.1016/j.bbrc.2018.09.170 PMid:30278887 DOI: https://doi.org/10.1016/j.bbrc.2018.09.170

Mutagenic Agent. 2016. A mutagen is defined as an agent that causes irreversible and heritable changes (mutations) in the cellular genetic materials, deoxyribonucleic acid (DNA). From: Science Direct. Encyclopedia of Food and Health.

Omar MS, Novak FJ, Brunner H. 1989. In vitro action of ethylmethanesulphonate on banana shoot tips. Sci Hortic, 40(4): 283-295. https://doi.org/10.1016/0304-4238(89)90102-7 DOI: https://doi.org/10.1016/0304-4238(89)90102-7

Pimentel MF, Arnão E, Warner AJ, Subedi A, Rocha LF, Srour A, Bond JP, Fakhoury AM. 2020. Trichoderma isolates inhibit Fusarium virguliforme growth, reduce root rot, and induce defense-related genes on soybean seedlings. Plant Dis, 104(7): 1949-1959. https://doi.org/10.1094/PDIS-08-19-1676-RE PMid:32396055 DOI: https://doi.org/10.1094/PDIS-08-19-1676-RE

Ploetz R, Freeman S, Konkol J, Al-Abed A, Naser Z, Shalan K, Barakat R, Israeli Y. 2015. Tropical race 4 of Panama disease in the Middle East. Phytoparasitica, 43(3): 283-293. https://doi.org/10.1007/s12600-015-0470-5 DOI: https://doi.org/10.1007/s12600-015-0470-5

Ploetz RC. 2006. Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. Phytopathology, 96(6): 653-656. https://doi.org/10.1094/PHYTO-96-0653 PMid:18943184 DOI: https://doi.org/10.1094/PHYTO-96-0653

Puyam A. 2016. Advent of Trichoderma as a bio-control agent-a review. J Appl Nat Sci, 8(2): 1100-1109. https://doi.org/10.31018/jans.v8i2.927 DOI: https://doi.org/10.31018/jans.v8i2.927

Raza W, Faheem M, Yousaf S, Rajer FU, Yamin M. 2013. Volatile and non-volatile antifungal compounds produced by Trichoderma harzianum SQR-T037 suppressed the growth of Fusarium oxysporum f. sp. niveum. Sci Lett, 1(1): 21-24.

Ren J, Tong J, Li P, Huang X, Dong P, Ren M. 2021. Chitosan is an effective inhibitor against potato dry rot caused by Fusarium oxysporum. Physiol Mol Plant Pathol, 113: 101601. https://doi.org/10.1016/j.pmpp.2021.101601 DOI: https://doi.org/10.1016/j.pmpp.2021.101601

Romera FJ, García MJ, Lucena C, Martínez-Medina A, Aparicio MA, Ramos J, Alcántara E, Angulo M, Pérez-Vicente R. 2019. Induced Systemic Resistance (ISR) and Fe deficiency responses in dicot plants. Front Plant Sci, 10: 287. https://doi.org/10.3389/fpls.2019.00287 PMid:30915094 PMCid:PMC6421314 DOI: https://doi.org/10.3389/fpls.2019.00287

Sarangi S, Swain H, Adak T, Bhattacharyya P, Mukherjee AK, Kumar G, Mehetre ST. 2021. Trichoderma-mediated rice straw compost promotes plant growth and imparts stress tolerance. Environ Sci Pollut Res, 28(32): 44014-44027. https://doi.org/10.1007/s11356-021-13701-3 PMid:33846916 DOI: https://doi.org/10.1007/s11356-021-13701-3

Savani AK, Bhattacharyya A, Baruah A. 2020. Endophyte mediated activation of defense enzymes in banana plants pre-immunized with covert endophytes. Indian Phytopathol, 73: 433-441. https://doi.org/10.1007/s42360-020-00245-8 DOI: https://doi.org/10.1007/s42360-020-00245-8

Singh UB, Singh S, Khan W, Malviya D, Sahu PK, Chaurasia R, Sharma SK, Saxena AK. 2019. Drechslerella dactyloides and Dactylaria brochopaga mediated induction of defense related mediator molecules in tomato plants pre-challenged with Meloidogyne incognita. Indian Phytopathol, 72(2): 309-320. https://doi.org/10.1007/s42360-019-00132-x DOI: https://doi.org/10.1007/s42360-019-00132-x

Sun X, Guo LD, Hyde KD, 2011. Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Divers, 47(1): 85-95. https://doi.org/10.1007/s13225-010-0086-5 DOI: https://doi.org/10.1007/s13225-010-0086-5

Švábová L, Lebeda A. 2005. In vitro selection for improved plant resistance to toxin‐producing pathogens. J Phytopathol, 153(1): 52-64. https://doi.org/10.1111/j.1439-0434.2004.00928.x DOI: https://doi.org/10.1111/j.1439-0434.2004.00928.x

Thakker JN, Patel N, Kothari IL. 2007. Fusarium oxysporum derived elicitor-induced changes in enzymes of banana leaves against wilt disease. J Mycol Plant Pathol, 37: 510-513.

Tripathi L, Odipio J, Tripathi JN, Tusiime G. 2008. A rapid technique for screening banana cultivars for resistance to Xanthomonas wilt. Eur J Plant Pathol, 121(1): 9-19. https://doi.org/10.1007/s10658-007-9235-4 DOI: https://doi.org/10.1007/s10658-007-9235-4

Van den Berg N, Berger DK, Hein I, Birch PR, Wingfield MJ, Viljoen A. 2007. Tolerance in banana to Fusarium wilt is associated with early up‐regulation of cell wall‐strengthening genes in the roots. Mol Plant Pathol, 8(3): 333-341. https://doi.org/10.1111/j.1364-3703.2007.00389.x PMid:20507503 DOI: https://doi.org/10.1111/j.1364-3703.2007.00389.x

Walters DR, Ratsep J, Havis ND. 2013. Controlling crop diseases using induced resistance: Challenges for the future. J Exp Bot, 64(5): 1263-1280. https://doi.org/10.1093/jxb/ert026 PMid:23386685 DOI: https://doi.org/10.1093/jxb/ert026

Wu YL, Yi GJ, Peng XX. 2010. Rapid screening of Musa species for resistance to Fusarium wilt in an in vitro bioassay. Eur J Plant Pathol, 128(3): 409-415. https://doi.org/10.1007/s10658-010-9669-y DOI: https://doi.org/10.1007/s10658-010-9669-y