Laboratory Studies on the Host Range of *Curinus coeruleus* Mulsant, an Exotic Predator of the Subabul Psyllid

J.DIRAVIAM* and C.A.VIRAKTAMATH DEPARTMENT OF ENTOMOLOGY, UNIVERSITY OF AGRICULTURAL SCIENCES, BANGALORE - 560 065.

The ladybird beetle Curinus coeruleus Mulsant was introduced into India from Thailand during October 1988 for the control of subabul psyllid Heteropsylla cubana Crawford (Jalali and Singh, 1989). This predator is a voracious feeder of the psyllids (Nakahara et al., 1987). Apart from H.cubana, the beetle is also known to feed on Nipaecoccus nipae (Maskell) (Nakahara et al., 1987), Planococcus citri (Risso), Coccus viridis (Green) (Wagiman et al., 1990), Chrysomphalus aonidum (Linnaeus), Aphis nerii Boyer de Fonscolombe, Aleurodicus dispersus Russel (Funasaki et al., 1988) and (Napompeth and Aphis gossypii Glover Manceratana, 1990) in other countries. Hence a study was conducted in the laboratory to find out the host range of C.coeruleus in India.

The study was made under a no choice condition to know the suitability of the hosts tested (Table 1). The adult beetles and grubs taken from a laboratory culture were introduced separately into rearing jars (9 x 18.5 cm) containing the prey on infested twigs. The cut ends of the infested twigs were dipped in water kept in small vials to keep them fresh. The beetles and grubs were observed for their feeding, and the most preferred host species were used to study the biology of *C.coeruleus*.

different hosts tested, Among the C.coeruleus preferred to feed on F.virgata, C.cajani and O.tarandus. Comparative biology of C.coeruleus was studied using eggs of O.tarandus and nymphs of H.cubana the standard host. Observations revealed that incubation period, larval duration and total life cycle of C.coeruleus were significantly lesser when fed with H.cubana than with O.tarandus (Table 2). However, adult longevity, fecundity, rate of reproduction and hatchability of C.coeruleus did not differ significantly between the two hosts. It appears that O.tarandus is an effective alternative host for C.coeruleus. Further, population dynamics studies on C.coeruleus and H.cubana indicated that during the months of April and

	Table	1.	Host	insects	tested	for	Curinus	coeruleu;
--	-------	----	------	---------	--------	-----	---------	-----------

Name of the host	Family	Stage of the host
Aphis craccivora Koch	Aphididae	Nymphs and Adults
Myzu persicae (Sulzer)	- do -	- do -
Toxaptera odinae van der Goot	- do -	- do -
Toxaptera citricidus Kirk.	- do -	- do -
Ceroplastodes cajani (Mask.)	Coccidae	- do -
Coccus viridis (Green)	- do -	- do -
Ferrisia virgata (Ckll.)	Pseudococcidae	- do -
Planococcus citri (Risso)	- do -	- do -
Oxyrhachis tarandus(F.)	Membracidae	Eggs
Nilaparvata lugens Stal.	Delphacidae	Nymphs and Adults

* Present Address : Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore - 641 003

Cto.co	No. of day		
Stage	H. cubana	O. tarandus	- 't' value (P = 0.05%)
Egg	6.8 ± 1.03	7.6 ± 0.52	2.20
Larva I Instar	3.9 ± 1.29	7.8 ± 0.63	8.48
II Instar	3.4 ± 0.52	4.6 ± 0.52	5.17
III Instar	4.7 ± 0.82	4.4 ± 0.52	NS
IV Instar	7.7 ± 0.48	7.1 ± 0.57	2.55
Total larval			
period	19.7 ± 1.77	23.9 ± 1.20	6.22
Prepupa	2.4 ± 0.70	1.8 ± 0.92	NS
Pupa	7.1 ± 0.32	7.1 ± 0.57	NS
Egg to adult	36.0 ± 2.75	40.4 ± 1.90	4.17
Adult longevity			
Male	88.9 ± 8.20	79.8 ± 5.98	NS
Female	69.1 ± 7.75	64.7 ± 5.42	NS
Fecundity *	715.8 ± 218.59	797.0 ± 114.08	NS
Fecundity/female/day *	14.15 ± 3.23	16.12 ± 1.92	NS
Hatchability	87.32%	85.47%	NS

Table 2. Biology of Curinus coeruleus on Heteropsylla cubana and Oxyrhachis tarandus

* eggs

May, there is a decline in psyllid population which is later followed by that of *C.coeruleus* (Diraviam and Viraktamath, 1990). However, these are the months when populations of *O.tarandus* are high on plants like *Albizzia* spp. and *Cassia* spp. Hence, *O.tarandus* may be used as supplementary food for *C.coeruleus* during off-season in the laboratory.

KEY WORDS : Curinus coeruleus, host range, Heteropsylla cubana, Oxyrhachis tarandus.

REFERENCES :

- DIRAVIAM, J. and VIRAKTAMATH, C.A. 1990. Population dynamics of the introduced ladybird beetle, *Curinus coeruleus* Mulsant in relation to its psyllid prey *Heteropsylla cubana* Crawford in Bangalore, *J.Biol. control*, 4, 99-104.
- FUNASAKI, G.Y., LAI, P.Y., NAKAHARA, L.M., BEARDSLEY, J.W. and OTA, A.K. 1988. A review of biological control introductions in Hawaii : 1890 to 1985. Proc. Hawaii. Ent. Soc., 28, 105-160.
- JALALI, S.K. and SINGH, S.P. 1989. Release and recovery of an exotic coccinellid

predator, Curinus cocruleus (Muls.) on subabul psyllid, Heteropsylla cubana Crawf. in India. J. Insect Sci., 2, 158-159.

- NAKAHARA,L., NAGAMINE,W., MATAYOSHI,S. and KUMASHIRO,B. 1987. Biological control program on the leucaena psyllid, *Heteropsylla cubana* Crawford (Homoptera:Psyllidae) in Hawaii. Leucaena Res. Rpt., 7, 39-44.
- NAPOMPETH, B. and MANEERATANA, T. 1990. Biological and partial ecological life tables of Heteropsylla cubana Crawford and its predator, Curinus coeruleus Mulsant in Thailand. In: 'Leucaena psyllid: Problems management: Proceedings an of and International Workshop held in Bogor, 1989'. 16-21, January Indonesia, (B.Napompeth and K.G.Mac Dicken Eds.). International Winrock 130-138. pp. /IDRC/NFTA.
- WAGIMAN,F.X., MANGOENDIHARDJO,S. and MAHRUB,E. 1990. Performance of Curinus coeruleus Mulsant as a predator against Leucaena psyllid. In: 'Leucaena psyllid : Problems and management : Proceedings of an International Workshop held in Bogor, Indonesia, January 16-21, 1989'. (B.Napompeth and K.G.Mac Dicken Eds.). pp.163-165. Winrock International / IDRC/NFTA.