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In distributed generation systems, islanding detection is a
necessary function of grid-connected inverters. In view of the
performance disadvantages of traditional passive and active
islanding detection methods, this paper proposes a novel
passive islanding detection method. The proposed method
first extracts characteristic parameters from the inverter
output voltage signal and inverter output current signal
through lifting wavelet transform, and then conducts the
pattern recognition of these extracted characteristic
parameters via BP neural network, so as to judge if there is
an islanding phenomenon. As verified by the simulation and
experiment results, the islanding detection method proposed
in this paper is effective, and is featured by high detection
speed and small non-detection zone, without affecting
electric energy quality; its detection performance has been
remarkably improved in comparison with that of traditional
islanding detection methods.

Keywords: Inverter, islanding detection, lifting wavelet,
neural network.

1.0 Introduction

The renewable energy based distributed generation
(DG) technology has seen a rapid development all over
the world in recent years. In DG systems, renewable

energies are first transformed into electric energy and then
transmitted to the grid through grid-connected inverters,
which poses challenges to the safe and stable operation of
the grid, a major one of which is the islanding detection of
grid-connected inverters. The so-called “islanding” refers to
the phenomenon in which, due to the interruption of power
supply by the grid as a result of failure or power-cut
maintenance, the inverter still transmits electric energy to the
grid and consequently forms a self-contained power supply
island with local load which cannot be controlled by the
public grid system. When a DG system is in the islanding
operation state, it will endanger the safety of maintenance
personnel, and if the islanding phenomenon is not eliminated
before the grid is reclosed, it will result in asynchronous grid

connection and may damage electric equipment. Thus, it is of
great importance to quickly and accurately detect the
islanding phenomenon of DG system and adopt related anti-
islanding protection measures [1,2,3,4].

Currently, the inverter-based islanding detection methods
can be divided into the following two types: passive detection
methods and active detection methods. Passive islanding
detection methods are based on the fact that the islanding
phenomenon is generally accompanied by the remarkable
changes of voltage, frequency, phase and so forth, and we
can judge the occurrence of islanding through detecting
these electric parameters to see if their changes have
exceeded the set thresholds. Common passive detection
methods include the overvoltage/under voltage and over
frequency/under frequency detection method, the harmonics
detection method, the phase jump detection method and the
detection method of key electric parameters change rate.
Active islanding detection methods are conducted through
injecting a disturbance signal into the voltage or current
control signal of the inverter, as the disturbance signal causes
the amplitude or frequency of inverter output voltage to
continuously deviate from normal and exceed the threshold
after the occurrence of islanding, thus detecting the
phenomenon of islanding. Common active detection methods
include the active frequency drift method, the Sandia
frequency shift method, the slip-mode frequency shift
method, the impedance measurement method and the output
power disturbance method [5,6,7,8].

Passive islanding detection methods exert no influence on
the quality of power supply, but they have the disadvantages
of long detection time and large non-detection zone (NDZ),
and easily results in wrong detection and missed detection.
Active islanding detection methods have overcome the
disadvantages of passive islanding detection methods and
are featured by relatively high detection speed and remarkably
reduced NDZ, but, due to the introduction of the disturbance
signal, they have increased the harmonics in the inverter
output current and reduced the quality of the electric energy
provided by the DG system.

Aimed at the disadvantages of traditional passive and
active islanding detection methods, this paper proposes a
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novel passive islanding detection method based on lifting
wavelet and neural network. This method first extracts
characteristic parameters from related signals of the grid-
connected inverter through lifting wavelet transform, and then
conducts the pattern recognition of these extracted
characteristic parameters via BP neural network, so as to judge
if there is an islanding phenomenon. As indicated by the
simulation and experiment results, the proposed islanding
detection method is featured by extremely high accuracy and
reliability, has not only overcome the disadvantages of long
detection time and large NDZ of traditional passive islanding
detection methods, but also avoided the adverse influence of
active islanding detection methods on the quality of power
supply [9,10].

2.0 Passive islanding detection technology based on lifting
wavelet and neural network

2.1 OVERVIEW OF ISLANDING DETECTION PRINCIPLE

The principle of the proposed islanding detection method
is shown in Fig.1. First, collect inverter output voltage value
and inverter output current value, subject of the collected
voltage and current values to lifting wavelet transform to
obtain the related wavelet coefficients; then, provide
algorithm processing for the obtained wavelet coefficients;
finally, adopt the processed signal as the characteristic vector
space of BP neural network, provide it to the input layer
neurons of neural network, and use the neural network to
judge the working state of the DG system according to the
input characteristic vector: if the system is detected to be in
the islanding state, anti-islanding protection will be provided;
if the system is detected to be in the grid-connected state, no
anti-islanding protection will be provided.

2.2 LIFTING WAVELET TRANSFORM AND SIGNAL CHARACTERISTIC

PARAMETER EXTRACTION

2.2.1 Principle of lifting wavelet transforms
Wavelet transform is the most effective method for

analyzing non-stationary signals or signals with singularity
mutations, and applies to the occasions where transient
mutation signals are generated, such as islanding detection.
Compared to traditional wavelet algorithms which impose a
heavy calculation burden and consume a lot of time, the lifting
wavelet algorithm is featured by simple algorithm and quick
calculation, and can complete wavelet transform at the current
position without having to allocate additional memory, thus
facilitating the realization of chips. Lifting wavelet transform
does not depend on Fourier transform, and can satisfactorily
overcome the boundary problem of wavelet transform; based
on the Euclidean algorithm, all the traditional wavelets can be
constructed through the lifting scheme. In view of the above
advantages of lifting wavelet, this paper adopts lifting wavelet
transform to extract the signal characteristic parameters
needed by islanding detection [11].

The basic process of lifting wavelet transform can be
divided into three links: split, prediction and update, the latter
two of which are introduced to realize the high and low
frequency separation of signals.
(1) Split

Split means to split an original signal sj = {sj, k} into two
mutually disjoint subsets, the length of each subset is half of
that of the original set. Usually, a sequence is split into the
even sequence ej–1 and the odd sequence oj–1, that is,

Split (sj) = (ej–1, oj–1) ... (1)
Where ej–1 = {ej–1,k = sj, 2k}, oj–1 = {oj–1, k = sj, 2k+1}. Such

decomposition is referred to as inert wavelet transform.
(2) Prediction

Given the certain correlation between the even sequence
and the odd sequence, the even sequence ej–1 can be used
to predict the odd sequence oj–1. The difference dj–1 between
the actual value oj–1 and the predicted value P(ej–1) reflects
the degree of approximation between the two, which is
referred to as wavelet coefficient and corresponds to the high-
frequency component of the original signal sj. If the prediction
is rational, the information contained in the difference dataset
dj–1 will be much less than the information contained in the
original set oj–1. The prediction process can be expressed as:

dj–1 = oj–1–P(ej–1) ... (2)
Where the prediction operator P is expressed by the

prediction function Pk, which can be set at the corresponding
data in ej–1.

Pk(ej–1) = ej–1,k = sj, 2k ... (3)
Or it can be set at the mean value of the corresponding

data in ej-1 and its adjacent data:Fig.1: Principle of islanding detection
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Pk(ej-1)=(ej-1,k + ej-1,k+1)/2 = (sj,2k + sj,2k+2)/2 (4)
Pk can also be expressed by a more complex function.

(3) Update
The prediction process may witness the loss of some

signal characteristics which happen to be the expected useful
information, such as the mean value of the signal. To recover
these characteristics lost in the prediction process, the update
operator U is introduced in the following update process:

sj–1 = ej–1 + U(dj–1) ... (5)
Where sj–1 is the low-frequency component of sj; just like

the prediction function, the update operator can also be
expressed by different functions, such as

Uk(dj–1) = dj–1, k/2 ... (6)
Or
Uk(dj–1) = (dj–1, k–1 + dj–1, k)/4+1/2 ... (7)
Expressing P and U with different functions constructs

different wavelet transforms.
Through wavelet lifting, the signal sj can be decomposed

into the low-frequency component sj–1 and high-frequency
component dj–1; the low-frequency data subset sj–1 can also
be subject to split, prediction and update in the same manner
and be further decomposed into sj–2 and dj–2. In this way, after
n times of decomposition, the wavelet coefficients of the
original data sj can be expressed as {sj–n, dj–n, dj–n+1, ..., dj–1},
wherein, sj–n represents the low-frequency component of the
signal and {dj–n, dj–n+1, …, dj–1} represent the high-frequency
component coefficients of the signal from low to high. The
decomposition corresponds to the above three lifting steps:
split, prediction and update.
2.2.2 Extraction and processing of signal characteristic
parameters

When lifting wavelet is used to decompose a signal, the
decomposition will cause the lengths of the low-frequency
and high-frequency components of the signal to be cut by
half, and, with the increase of the decomposition scale, the
numbers of data points of low-frequency and high-frequency
components will become less and less. Redundant lifting
wavelet transform adopts interpolation zero-padding
operation for the predictors and updaters of different layers,
thus ensuring that the lengths of low-frequency and high-
frequency components are equal to that of the original signal
and providing richer characteristic data. On that account, this
paper selects redundant lifting wavelet transform to extract
the characteristic parameters of related signals, with the
purpose of making a sound judgment about islanding state
and non-islanding state.

According to the real-time requirements on classification
accuracy, detection speed and hardware service, the signal
sampling frequency for islanding detection was set at 10KHz
in this paper; according to Shannon’s Theorem, there can be

a maximum of seven layers of decomposition above the
fundamental frequency, and the high-frequency components
of the seven layers are represented by D1~D7, respectively;
see the decomposition levels and frequency band range in
Table 1.

TABLE 1: WAVELET DECOMPOSITION LEVELS AND FREQUENCY BAND

Decomposition High-frequency Frequency
levels components bandrange

1 D1 2500~5000
2 D2 1250~2500
3 D3 625~1250
4 D4 312.5~625
5 D5 156.25~312.5
6 D6 78.125~156.25
7 D7 39.0625~78.125

Before using lifting wavelet and neural network
technology for islanding detection, it is necessary to select
some voltage or current signals from the DG system to
construct characteristic parameters. However, when extracting
voltage signal characteristic parameters or current signal
characteristic parameters alone for islanding identification, the
characteristic parameters extracted at islanding state and
those extracted at non-islanding state will be very
approximate under certain loading conditions, which will
further result in mode mixing and causes the neural network
to make a misjudgment in identifying the islanding mode. For
that reason, this paper simultaneously extracts the
characteristic parameters of both inverter output voltage and
inverter output current, for the purpose of identifying the
islanding mode.

The general processing method of extracting signal
characteristic parameters through wavelet transform is to
solve the norms of all the wavelet coefficients of the high-
frequency component of each layer. To reduce the input
signal value of neural network and prevent an excessively
large absolute value of its net input from causing the nerve
cell output to be saturated and further affecting the learning
convergence speed of neural network, instead of calculating
the norm of the wavelet coefficient, this paper chooses to
calculate the absolute mean value of the wavelet coefficient
as the input signal of neural network. In addition, to reduce
the degree of complexity of neural network and to lighten the
calculation burden for the purpose of improving the real-time
performance of islanding detection, the number of
characteristic parameters input into the neural network should
be controlled. On that account, under the premise of
guaranteeing the accuracy rate of identification, the
characteristics significantly affecting the identification results
can be retained, while those having an insignificant influence
can be stripped out. By comparing the absolute mean values
of the wavelet coefficients of seven scales obtained at both
islanding state and non-islanding state, the absolute mean
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values of the wavelet coefficients of layer D1 and layer D2
were selected for the mode identification of neural network.
To enlarge the differences among characteristic vectors of the
system at different working states and ensure that the neural
network can make an accurate judgment about the islanding
state, six signals, consisting of the absolute mean values of
the wavelet coefficients of the layer D1 and layer D2 of the
selected voltage and current as well as their corresponding
differences, were adopted to constitute the characteristic
vector space of neural network. The specific processing of
characteristic parameters by this islanding detection method
is thus described here: Provide two-scale wavelet
decomposition for the collected inverter output voltage and
inverter output current signals respectively, extract the
wavelet coefficients of the high-frequency components of the
two scales and solve their absolute values; respectively
calculate the mean values of the wavelet coefficients within a
voltage period; denote the absolute mean values of voltage
signal wavelet coefficients as Du1 and Du2, denote the
absolute mean values of current signal wavelet coefficients
as Di1 and Di2, and use the six signals, Du1, Du2, Di1 and Di2
as well as their corresponding differences (Du1–Di1) and
(Du2–Di2), to constitute the characteristic vector space of
neural network [12].

2.3 STRUCTURAL DESIGN AND ALGORITHM IMPROVEMENT OF

NEURAL NETWORK

After lifting wavelet transform and processing, the values
of the characteristic parameters will change significantly under
different loading conditions, so it is very difficult to judge the
islanding state and non-islanding state of the DG system
through setting thresholds; therefore, a powerful system
identification tool should be introduced in such case. By
virtue of their unique learning ability and approximation
function, artificial neural networks can be used to identify any
non-linear system. Among them, BP neural network has
received the closest attention and been most widely applied,
so BP neural network was adopted by this paper for the mode
identification of the working state of the DG system. BP neural
network is a multi-layer feed-forward network trained by the
error back-propagation algorithm, and the topological
structure of its network model consists of input layer, hidden
layer and output layer.

The number of input layer nodes of BP network is
generally equal to the number of vector dimensions of the
sample to be trained, and the number of output layer nodes
adopts the number of categories in the classification network.
There were six signals in the characteristic vector space of
neural network selected by this paper, so the number of input
layer nodes was set at 6. Given that output only classifies
the current working state of the DG system, i.e., islanding
state and non-islanding state, the number of output layer
nodes was set at 1 [13].

Setting the number of hidden layer nodes is the key,

because if the number of nodes is insufficient, there will be a
low fault tolerance and a low ability of identifying unlearned
samples, and, if the number of nodes is excessive, the
duration of network training will be prolonged. Usually, the
number of hidden layer nodes can be designed with reference
to the following formula:

... (8)

Where l is the number of hidden layer nodes, n is the
number of input nodes, m is the number of output nodes, and
 is a constant between 1 and 10. According to multiple
trainings and experiments, when the number of hidden layer
nodes is set at 12, there will be relatively satisfactory training
speed and identification effects, so the number of hidden
layer nodes was set at 12.

To reduce signal collection quantity and improve
detection accuracy, the neural network structure adopts the
method of redundant design, that is, two identical neural
network modules are designed for islanding detection, so that
anti-islanding protection will be provided only when the
islanding state has been detected by both modules in
succession; otherwise, no control signal for anti-islanding
protection will be produced. In this way, in the case of short
circuit, voltage reduction or other sudden changes having
occurred at a non-zero crossing point of voltage in the grid,
the transient strong disturbance signal hereby generated can
be prevented from causing the neural network to make a
misjudgment. Meanwhile, it is not necessary in this case to
massively collect the voltage and current samples at different
moments of mutations for the purpose of avoiding
misjudgments, which as a result reduces the collection
quantity of signals and lightens the calculation burden.

The most common learning algorithm of BP neural network
is the steepest descent static optimization algorithm with a
momentum term, and its weight adjustment formula is:

... (9)

Where W(n) is the adjustment amount of this iterative
weight; W(n–1) is the momentum term, where  is the
momentum factor (0<<1), E is the learning error, and  is
the learning rate (also referred to as step size; here it is a fixed
value) [14]. The disadvantages of this algorithm mainly
include:

(1) Seen from the error curved surface, in a flat zone, an
excessively small  will increase the number of trainings; in a
zone with intensive error changes, an excessively large  will
result in vibrations and increase the number of iterations.
Thus, adopting a fixed value for  makes it extremely difficult
to ascertain an optimal learning rate that is always suitable.

(2) Given that the activation function adopted by BP
network is sigmoid, when a nerve cell output approaches the
saturation zone of S function, the gradient becomes very
small, causing the adjustment amounts of related weights to
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be almost zero and making it extremely difficult to get rid of
the local minimum state, as a result of which the network
learning rate becomes poor or even unable to converge.

With regard to the above disadvantages, this paper adopts
a dynamic variable-step size learning algorithm. In addition,
reducing the sensitivity of neural network can not only
improve the performance of neural network but also increase
its learning efficiency, and the sensitivity of neural network
is related to its weight adjustment. On that account, for the
purpose of algorithm modification, the author adopts the
algorithm that combines self-adaptive variable step size and
reduced neural network sensitivity. See the modified algorithm
below:

... (10)

It can be seen from the above formula that the learning
rate  consists of three stacked parts.

In the first part k10, 0 is a fixed component and is set at
0.3; k1 varies with the size of the training error E. When the
absolute value of the training error |E|>15%, k1 is set at 2 to
increase the weight adjustment amount, thus to rapidly
change neural network output to reduce the error; when
5%<|E|<15%, k1 is set at 1.5 to reduce neural network
sensitivity and prevent network output overshoot and
backward error; when |E|<5%, k1 is set at 1 to reduce network
sensitivity again and quickly reduce the training error to the
allowed value.

In the second part of (10), Ok(n) represents the actual
output value of the neural network node of this iteration, and,
in sigmoid function, it ranges between 0 and 1. Thus, when
the nerve cell output approaches the saturation zone of S
function, Ok(n) is approximate to 0 or 1, while [2Ok(n)–1]2 is
approximate to the maximum value 1; the farther the nerve cell
output away from the saturation zone, the lower the
[2Ok(n)–1]2 value. Thus, the second component of step size
calculation dynamically changes with nerve cell output, and,
when approaching the saturation zone of S function,
correspondingly increasing the step size helps to increase the
gradient change rate and accelerates the training. It is proper
to set k2 between 0.05 and 0.15.

The third part of (10) dynamically increases or decreases
the learning rate  according to the symbol of the gradient
direction E/W(n) of two iterations, and k3 is set at 0.1 after
multiple experiments. Increasing this component in  aims to
eliminate the complex variable canyon area on the error
curved surface; fixed step size, due to its inability to adapt to
complex variations, will result in the reduction of convergence
speed. The basic idea is that, under the trend of gradient
reduction, when the gradient direction symbols of two
continuous iterations are opposite, it suggests the
excessively quick gradient reduction, so the step size should
be reduced, that is, subtracting 0.1 from ; contrarily, when

the gradient direction symbols are the same, it suggests that
gradient reduction can be further accelerated, in which case
the step size should be increased by 0.1.

The authors continuously tested a group of samples for
ten times by the traditional learning algorithm, and the mean
number of iterations was 7,432. When the method proposed
by the author was adopted to test the same samples, the mean
number of iterations declined to 2,128. It is thus clear that the
modified algorithm remarkably reduces the number of
iterations of neural network training, and further significantly
shortens the training time.

3.0 Simulation modelling and analysis of
simulation results

The simulation uses a single phase grid-connected DG
system, and the MATLAB model is shown in Fig.2. In this
figure, L1 is the local RLC parallel load, and the grid voltage
is supplied by the A-phase of the three-phase programmable
power supply, which can realize the voltage mutation or join
the harmonics. The PI_PWM module is a PI control and a
PWM pulse generating circuit, the grid-connected inverter
adopts current control, and the specified value of current
amplitude is 20A. The wave_nn1 module is the islanding
detection module which is based on lifting wavelet and neural
network, the internal structure of this module is shown in
Fig.1. The structure of islanding detection part in wave_nn2
module is the same as that of wave_nn1 module, which is
used for the secondary judgment on the system state. When
the wave_nn1 module hasn’t detected the islanding state, the
neural network in wave_nn2 is not put into work, the value
of output signal out1 of wave_nn2 module is equal to that of
output signal out of module wave_nn1, it is a high level; If
wave_nn1 module detects a system islanding state, it will
start the neural network in wave_nn2 to make the secondary
judgment of the system state. If the result of secondary
judgment is still an islanding state, the output signal out1 of
wave_nn2 module goes low, then the trigger pulse of the
inverter is blocked, and the islanding protection of the system
is implemented; if the result of secondary judgment is not an
islanding state, the output signal out 1 remains high level,
and does not implement the islanding protection.

In Fig.2, five different states has been designed to test
the effect of islanding detection: (1) islanding state, the
breaker S1 in Fig.2 is disconnected and the DG system is
separated from the main grid to form an islanding; (2) load
mutation status, the switch S2 in this figure is suddenly
closed from the disconnected state, and the load L2 is added
into the circuit; (3) harmonic disturbance state, 4% pu 3rd
harmonic and 2% Pu 5th harmonic is added to the grid voltage
to implement the disturbance of the circuit; (4) short-circuit
state, the switch S3 in Fig.2 is closed from the disconnected
state, so that the output of the inverter is short to ground;
(5) grid voltage mutation state, the grid voltage suddenly
dropped to 60% of the original.
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After the simulation model is established, the BP network
can be trained, and the training process is as follows: (1) The
islanding state is set to mode 1, the non-islanding states such
as short-circuit, load mutation, voltage mutation and harmonic
disturbance are all set to mode 2; (2) Set the local RLC parallel
load for a wide variety of parameter values, and in each load
parameters condition, 7 groups inverter output voltage and
inverter output current signals in islanding state and each
non-islanding states are collected respectively, the samples
of input characteristic vector of neural network is obtained
after the wavelet transform and data processing, 5 groups of
characteristic vectors are used as training samples of BP
neural network, and 2 groups of characteristic vectors are
used as test sample of BP network; (3) Neural network is
trained with the training sample, and the training effect of
neural network is tested by the test sample. When the test
results show that the neural network can accurately identify
the islanding and non-islanding mode and then end the
training. Afterwards, we can use the trained neural network
to carry on the islanding detection simulation test. The test
parameter of local load L1 is set to PL=1500W,
QL=QC=1500Var, which has not been trained by the neural
network beforehand. The MATLAB simulation waveforms are
shown in Fig.3.

Fig.3(a) is the waveform when the breaker S1 is
disconnected at the moment of 0.04 seconds. Due to the
formation of an islanding state, the grid current is reduced to
0 at 0.04 seconds, the output signal of wave_nn2 module of
Fig.2 changes from high level to low level at 0.08 seconds to

block the trigger pulse of the inverter,
so the output current and output
voltage of the inverter are reduced to
0, which means that the islanding state
has been successfully detected, and
the detecting time is 0.04 seconds,
which meets the detecting time
requirement of national standard GB/T
19939–2005 [15].

Fig.3(b) is the waveform when the
local load has sudden change. The
figure shows that after 0.04 seconds the
grid current becomes smaller due to
local load shunt increases. Because it
is a non-islanding state, the islanding
protection has not been provided, so
the output voltage and output current
of the inverter remain unchanged.

Fig.3(c) is the waveform when has
the harmonic disturbance. The
harmonic component is added to the
grid voltage at the moment of 0.04
seconds, so after 0.04 seconds the grid
current has a certain distortion. Again,
because it is a non-islanding state, the

Fig.2: Simulation model of islanding detection

DG system does not carry out islanding protection, so the
inverter output current remains unchanged.

Fig.3(d) is the waveform when a short-circuit occurs. At
0.04 seconds the grid current becomes very large because of
short-circuit, and the inverter output voltage is approximately
zero, due to the non-islanding state, islanding protection
does not carry out, so the inverter output current remains
unchanged.

Fig.3(e) is the waveform when has grid voltage mutation.
A non-zero-crossing moment of grid voltage (here set to 0.041
seconds) is selected when the grid voltage dip 40%, so the
grid voltage and the inverter output voltage have significant
change in 0.041 seconds, also since the non-islanding state
and without islanding protection, the inverter output current
remains unchanged.

In order to prove the necessity of redundancy design of
neural network module, the wave_nn2 module in Fig.2 is
removed, the same non-zero-crossing moment of grid voltage
(that is 0.041 seconds) is selected to make the grid voltage dip
40%, Fig.4 is the simulation waveform. The figure shows that
the inverter output current is reduced to zero due to the
islanding protection malfunction. To compare Fig.4 and Fig.3(e),
because the grid voltage dips, the grid current forms a large
impact current in 0.041 seconds, so that at this moment the
extracted values of characteristic parameters of grid voltage
sag state are similar to that of islanding state, and the neural
network is likely to mistakenly judge the voltage mutation as a
islanding occurrence. Through several tests, authors found
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that for any voltage mutational event occurred in non-zero-
crossing moment, as long as the sample has not been learned,
the neural network has the possibility of misjudgment. It is
similar to the voltage mutation, the short-circuit event occurred
in non-zero-crossing moment may also be misjudged by neural
network. Using secondary judgment in the next voltage cycle,
the impact of the mutation signal has passed, no longer affect
the work of the neural network, thereby improving the accuracy
of pattern recognition of neural network. At the same time, it
can reduce the collected amount of training sample, and save
the training time of neural network.

The islanding detection method proposed in this paper
does not add perturbation to signals, and overcomes the
disadvantages of the active islanding detection method which

can affect the power quality. Changing the parameters of local
load L1 many times to carry out simulation test under the load
matching and load mismatch conditions, all can effectively
detect the occurrence of islanding. Therefore, compared to the
traditional passive islanding detection method, the proposed
method has the advantages of fast detection speed and small
NDZ. Moreover, the reliability of detection is improved by
using secondary judgment of islanding.

4.0 Analysis of experimental results
According to the simulation model, a set of experimental
apparatus was designed. In order to verify the detection

Fig.3: Simulation waveform of islanding detection

Fig.4 contrast waveform for grid voltage mutation
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performance of the proposed islanding detection method
under the condition of multi grid-connected inverters, 3
SG1K5TL photovoltaic inverters are used in the experimental
apparatus, as shown in Fig.5. In DG system, the signal is
mainly interfered by low order harmonics such as the 3rd and
5th harmonic, and the wavelet decomposition in this paper
only have two scales, that is the high-frequency components
of a signal is extracted to identify DG system state, along with
the use of secondary judgment, so the neural network never
has misjudgment of system state in the harmonic disturbance
experiment. Therefore, the analysis is focused on the
experimental results of the island state, the load mutation
status and the grid voltage mutation state. The experimental
parameters are set as follows: the output power of the 3
inverters are all 1000W, the local load is set to PL=3000W,
QL=QC=3000var, the inverter output active power is close to
matching the active power consumed by local load.

Fig.6 is the experimental waveform when the islanding
occurs. In this figure, waveform 1 is the grid current, and

waveform 2, 4, 3 are the output currents of the 3 inverters.
The figure shows that after the grid current is reduced to zero,
that is after the islanding is occurred, the inverter output
currents immediately dropped to 0, which means the inverters
have successfully detected the islanding and have
implemented protective measures.

Fig.7 is the experimental waveform when the local load has
sudden change. In this figure, the four kinds of waveforms
are the same as those in Fig.6, the local load suddenly
increases 1000W during the experiment. As can be seen from
the figure, the grid current increases suddenly when the load
mutates, because it is a non-islanding state, the islanding
protection does not carry out, and the output currents of the
inverters remains unchanged.

Fig.8 is the experimental waveform of grid voltage
plunged by 30%. In this figure, waveform 1 is the grid

Fig.5: Experimental apparatus of islanding detection

Fig.6: Waveform for islanding occurred in system

Fig.7: Waveform for local loads mutation

Fig.8: Waveform for voltage grid mutation
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voltage, and waveforms 2, 4, 3 are the output currents of the
3 inverters. The figure shows, after a sudden drop of grid
voltage, the inverter output currents do not drop to zero
as in Fig.6, indicating that the neural network correctly
identifies the non-islanding state there is no islanding
protection error.

The above experimental results show that the proposed
method can detect the islanding quickly and accurately, and
the disturbance signals such as load mutation and grid
voltage mutation will not cause disoperation. In addition, this
method can overcome the shortcoming of traditional passive
detection method which will have NDZ under the condition
of load matching.

5.0 Conclusions
This paper proposes a novel passive islanding detection
method based on lifting wavelet and neural network. This
method first extracts characteristic parameters from related
signals of the DG system through lifting wavelet transform,
and then conducts the pattern recognition of these extracted
characteristic parameters via BP neural network, so as to
judge if the DG system is at the islanding state. As indicated
by the simulation and experiment results, the islanding
detection method proposed by this paper, by virtue of the
excellent performance of lifting wavelet in extracting the
transient characteristics of the power system and the
powerful mode identification ability of neural network, can
accurately judge and identify the islanding state and
various non-islanding states. As indicated by the simulation
and experiment results under multiple loading conditions of
matching and mismatching between the grid-connected
inverter and the local load power, this method is featured by
high detection speed and small NDZ. In addition, given that
the proposed islanding detection method does not introduce
any disturbance variable into the control signal, it does not
adversely affect electric energy quality.

Conflict of interest
This article content has no conflict of interest.

Acknowledgement
This work is supported by the natural science foundation
project of Anhui Province (160805ME120), the University
Natural Science Research project of Anhui Province
(KJ2015A245), and research fund of Tongling University
(2014tlxyrc03)

6.0 References

[1] Serban E., Pondiche C., Ordonez M.,(2015): “Islanding
detection search sequence for distributed power
generators under AC grid faults”, IEEE Transactions
on Power Electronics, vol. 30, pp.3106-3121, June.

[2] Dong Dong, Bo Wen, Mattavelli P., Boroyevich D.,
Yaosuo Xue, (2014): “Modeling and design of
islanding detection using Phase-Locked Loops in
three-phase grid-interface power converters”, IEEE
Journal of Emerging and Selected Topics in Power
Electronics, vol. 2, pp. 1032-1040, April.

[3] Guo Y., Li K., Laverty D.M., Xue Y. (2015):
“Synchrophasor-based islanding detection for
distributed generation systems using systematic
principal component analysis approaches”, IEEE
Transactions on Power Delivery, vol. 30, pp.2544-2552,
June.

[4] Al Hosani M., Zhihua Qu, Zeineldin H.H., (2015):
“Development of dynamic estimators for islanding
detectionof inverter-based DG”, IEEE Transactions on
Power Delivery, vol. 30, pp. 428-436, January.

[5] Xiaolong Chen, Yongli Li. (2014): “An islanding
detection algorithm for inverter-based distributed
generation based on reactive power control”, IEEE
Transactions on Power Electronics, vol. 29, pp. 4672-
4683, September.

[6] Samet H., Hashemi F., Ghanbari T. (2015):“Islanding
detection method for inverter-based distributed
generation with negligible non-detection zone using
energy of rate of change of voltage phase angle”, IET
Generation, Transmission & Distribution, vol.9, pp.
2337-2350, November.

[7] Alam M.R., Muttaqi K.M., Bouzerdoum A. (2014): “An
approach for assessing the effectiveness of multiple-
feature-based SVM method for islanding detection of
distributed generation”, IEEE Transactions on
Industry Applications, vol. 50, pp. 2844-2852, April.

[8] Jun Zhang, Dehong Xu, Guoqiao Shen, Ye Zhu, Ning
He, Jie Ma(2013):“An improved islanding detection
method for a grid-connected inverter with intermittent
bilateral reactive power variation”, IEEE Transactions
on Power Electronics, vol. 28, pp. 268- 278, January.

[9] Lidula, A. D. Rajapakse (209): “Fast and reliable
detection of power islands using transient signals”
Fourth International Conference on Industrial and
Information Systems, pp.1-6.

[10] Samui A., Samantaray S.R. (2013): “Wavelet singular
entropy-based islanding detection in distributed
generation”, IEEE Transactions on Power Delivery,
Vol.28, pp.411-418, January.

 [11] Lidula N.W.A., Rajapakse A.D. (2012): “A pattern-
recognition approach for detecting power islands
using transient signals—part II: performance
evaluation”, IEEE Transactions on Power Delivery,
vol.27, pp.1071-1080, March.



100 MAY-JUNE 2021

Printed by Pradip Kumar Chanda at The Indian Press Pvt. Ltd. 93A Lenin Sarani, Kolkata 700 013 and
published by him for Books & Journals Pvt. Ltd. from 62 Lenin Sarani, Kolkata 700 013

[12] Yang Tao, Feng Yongxin, Ren Yong, Tang Lei, Li
Yanghai(2012): “Parameter Identification of Steam
Turbine Speed Governor System”, 2012 Asia-Pacific
Power and Energy Engineering Conference, pp. 1-8.

[13] Kuei-Hsiang Chao, Min-Sen Yang, Chin-Pao Hung,
(2013): “Applying a CMAC neural network to a
photovoltaic system islanding detection”,
International Conference on Machine Learning and
Cybernetics, Tianjin, pp. 259-264.

[14] Wenhao Huang, Haikun Hong, Guojie Song, Kunqing
Xie, (2014): “Deep process neural network for temporal
deep learning”, [14] 2014 International Joint
Conference on Neural Networks, pp. 465-472.

[15] S. Wang, H. Yang, L. Wang. (2005): GB/T 19939-2005
technical requirements of grid-connected photovoltaic
system, national standard of the people’s Republic of
China, Nov.

[11] Patricia M. Dechow and Douglas J. Skinner,(2000):
"Earnings Management: Reconciling the Views of
Accounting Academics, Practitioners, and
Regulators", Accounting Horizons, 2000, Vol.14 (2),
p.235-260.

[12] Katherine A. Guuny, (2010): "The Relation between
Earnings Management Using Real Activities
Manipulation and Future Performance: Evidence from
Meeting Earnings Benchmarks", Contemporary
Accounting Research, Vol.27 (3), p.855-888.

[13] Jianqiao Lu(1999): "Empirical Study on the Earnings
Management of China's Deficit Listed Companies",
Accounting Research, (9), p.25-35.

[14] Zengquan Li and Wenbin Lu, (2003): "The Stability of
Accounting Earnings: Discovery and Enlightenment",
Accounting Research, (2), p.19-27.

[15] Mian Qin and Wei Zhou,(2003): "The Feature Analysis
of Eight Accruals", Capital Markets Magazine, (9),
p.14-17+7.

[16] P.M. Dechow, A.P. Sweeney, and R. G. Sloan, (1995):
"Detecting Earnings Management", The Accounting
Review, Vol.70 (2), p193-225.

[17] Qiulin Quan, (2017): "Intervention Research of New
Accounting Standards and Corporate Earnings
Management", Finance and Taxation Research, (13),
p.182-183.

ANALYSIS OF THE EARNINGS MANAGEMENT METHODS OF CHINA’S ELECTRIC POWER COMPANIES BASED
ON MODIFIED JONES MODEL

(Continued from page 90)

JOURNAL OF MINES, METALS & FUELS
Annual Subscription :

Rs.3000 (India); £280.00 or $400.00 (Foreign)
The Editor

Journal of Mines, Metals & Fuels
Moon Plaza

2A, 2nd Floor, 62 Lenin Sarani, Taltala,
Kolkata 700 013 India

E-mail: bnjournals@gmail.com / pradipchanda@yahoo.co.uk  www.jmmf.info


