Dietary Fat and Cholesterol Interactively Alter Serum Lipids and Gut Microbiota in Wistar Rats

Jump To References Section

Authors

  • Department of Nutrition and Food Technology, Human Nutrition and Dietetics, The University of Jordan, Amman 11942 ,JO ORCID logo http://orcid.org/0000-0003-2863-3363
  • Department of Nutrition and Food Technology, Human Nutrition and Dietetics, The University of Jordan, Amman 11942 ,JO

DOI:

https://doi.org/10.21048/ijnd.2020.57.4.25502

Keywords:

Cholesterol, Dietary Fat, Dyslipidemia, Gut Microbiota, Lipid Profile, Serum, Wistar Rats.
Therapeutic nutrition, Gastrointestinal microflora, dyslipidemia, atherosclerosis

Abstract

Effects of dietary fat type on serum lipids and gut microbiota in cholesterol-fed rats were investigated. Forty-eight male Wistar rats were assigned (8/group) into three cholesterol-free (control) diets containing Corn Oil (CO), Sheep Tallow (ST) or Olive Oil (OO) or three cholesterol-supplemented (experimental) diets (COC, STC, OOC) and given ad libtium for nine weeks. Serum lipids, atherogenic indexes and several biological parameters were determined. Total Bacterial Counts (TBC) and seven bacterial groups were assessed. High-density lipoprotein cholesterol was higher (p<0.003) in CO (89.9 ± 6.5 mg/dl) and OO (80.9 ± 3.0 mg/dl) than ST (55.9 ± 4.3 mg/dl). Higher (p<0.05) total cholesterol and atherogenic coefficient were respectively found in OOC (131.4 ± 9.9 mg/dl, 1.20 ± 0.03 mg/dl) and COC (113.6 ± 10.6 mg/dl, 1.46 ± 0.35 mg/dl) than OO (96.4 ± 2.6 mg/dl, 0.19 ± 0.03 mg/dl) and CO (93.6 ± 2.6 mg/dl, 0.04 ± 0.03 mg/dl), but not in STC (95.8 ± 6.5 mg/dl, 0.70 ± 0.20 mg/dl) versus ST (87.0 ± 7.8 mg/dl, 0.60 ± 0.06 mg/dl). Neither fat nor cholesterol affected body weight, food intake, Bacteroidetes, Clostridium cluster IV, Lactobacillus, and Prevotella. Total Bacterial Count, Clostridium Coccoides-Eubacterium rectalae and Bacteroides were respectively higher (p<0.001) in ST (74.0 ± 20.0, 53.1 ± 8.5, 103.6 ± 32.3) than OO (24.8 ± 3.1, 18.9 ± 5.8, 32.3 ± 15.5). Bacteroides was higher (p<0.05) in ST (103.6 ± 32.3) than COC (38.7 ± 7.8), and STC (97.2 ± 13.5) than OO (32.3 ± 15.5) or COC (38.7 ± 7.8). Firmicutes and Clostridium Coccoides-Eubacterium rectalae were respectively lower (p<0.05) in STC (15.3 ± 1.2, 19.0 ± 4.3) and COC (19.0 ± 2.8, 14.4 ± 1.5) than ST (30.3 ± 4.7, 53.3 ± 8.5) and CO (32.7 ± 2.8, 33.0 ± 7.8), but not in OOC (23.5 ± 3.7, 34.4 ± 6.0) versus OO (25.3 ± 4.7, 18.9 ± 5.8).In conclusion, dietary fat and cholesterol alter serum lipids and gut microbiota in an interaction that is likely to have clinical connotations in cholesterol-related disorders.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2020-11-24

How to Cite

Ahmad, M. N., & Othman, G. A. (2020). Dietary Fat and Cholesterol Interactively Alter Serum Lipids and Gut Microbiota in Wistar Rats. The Indian Journal of Nutrition and Dietetics, 57(4), 387–407. https://doi.org/10.21048/ijnd.2020.57.4.25502

Issue

Section

Original Articles
Received 2020-06-15
Accepted 2020-09-14
Published 2020-11-24

 

References

Alberti, K.G., Eckel, R.H., Grundy, S.M., Zimmet, P.Z., Cleeman, J.I., Donato, K.A., Fruchart, J. C., James, W.P.T., Loria, C. M. and Smith Jr. S.C., NHLBI; AHA; WHF; IAS; and IASO. Harmonizing the metabolic syndrome: A joint interim statement of the IDF task force on epidemiology and Prevention;. Circulat., 2009, 120, 1640-1645. DOI: https://doi.org/10.1161/CIRCULATIONAHA.109.192644

Balakumar, P., Maung, U.K. and Jagadeesh, G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol. Res., 2016, 113, 600-609. DOI: https://doi.org/10.1016/j.phrs.2016.09.040

Hooper, L., Martin, N., Abdelhamid, A. and Davey Smith, G. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database of Syst. Rev., 2015, 6, 1-160. DOI: https://doi.org/10.1002/14651858.CD011737

Briggs, M.A., Petersen, K.S. and Kris-Etherton, P.M. Saturated fatty acids and cardiovascular disease: Replacements for saturated fat to reduce cardiovascular risk. Healthcare (Basel)., 2017, 5, 1-29. DOI: https://doi.org/10.3390/healthcare5020029

Ahmad, M. N. The effect of lentil on cholesterol-induced changes of serum lipid cardiovascular indexes in rats. Prog. Nutr., 2017, 19, 48-56.

Mazzocchi, A., Leone, L., Agostoni, C. and Pali-Scholl, I. The secrets of the Mediterranean diet. Does [Only] olive oil matter? Nutr., 2019, 11, 2941-2955. DOI: https://doi.org/10.3390/nu11122941

Ley, R.E., Turnbaugh, P.J., Klein, S. and Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature, 2006, 444, 1022-1310. DOI: https://doi.org/10.1038/4441022a

Cani, P.D., Amar, J., Iglesias, M.A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A.M., Fava, F., Tuohy, K.M., Chabo, C., Waget, A., Delmée, E., Cousin, B., Sulpice, T., Chamontin, B., Ferrières, J., Tanti, J.F., Gibson, G.R., Casteilla, L., Delzenne, N.M., Alessi, M.C. and Burcelin, R. Metabolic endotoxemia initiates obesity and insulin resistance. Diabet., 2007, 56, 1761-1772. DOI: https://doi.org/10.2337/db06-1491

Caesar, R., Tremaroli, V., Kovatcheva-Datchary, P., Cani, P.D. and Backhed F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab., 2015, 22, 658-681. DOI: https://doi.org/10.1016/j.cmet.2015.07.026

Tremaroli, V. and Backhed, F. Functional interactions between the gut microbiota and host metabolism. Nature, 2012, 489, 242-249. DOI: https://doi.org/10.1038/nature11552

Muralidharan, J., Galie, S., Hernandez-Alonso, P., Bullo, M. and Salas-Salvado, J. Plant-based fat, dietary patterns rich in vegetable fat and gut microbiota modulation. Front Nutr., 2019, 6, 157-168. DOI: https://doi.org/10.3389/fnut.2019.00157

Lam, Y.Y., Ha, C.W.Y., Hoffmann, J.M.A., Oscarsson, J., Dinudom, A., Mather, T.J., Cook, D.I., Hunt, N.H., Caterson, I.D., Holmes, A.J. and Storlien, L.H. Effects of dietary fat profile on gut permeability and microbiota and their relationships with metabolic changes in mice. Obesity (Silver Spring), 2015, 23, 1429-1439. DOI: https://doi.org/10.1002/oby.21122

Kubeck, R., Bonet-Ripoll, C., Hoffmann, C., Walker, A., Muller, V.M., Schuppel, V.L., Lagkouvardos, I., Scholz, B., Engel, K.H., Daniel, H., Schmitt-Kopplin, P., Haller, D., Clavel,T. and Klingenspor, M. Dietary fat and gut microbiota interactions determine diet-induced obesity in mice. Mol. Metab., 2016, 5, 1162-1174. DOI: https://doi.org/10.1016/j.molmet.2016.10.001

Martinez, I., Perdicaro, D.J., Brown, A.W., Hammons, S., Carden, T.J., Carr, T.P., Eskridge, K.M. and Walter, J. Diet-induced alterations of host cholesterol metabolism are likely to affect the gut microbiota composition in hamsters. Appl. Environ. Microbiol., 2013, 79, 516-524. DOI: https://doi.org/10.1128/AEM.03046-12

Bo, T., Shao, S., Wu, D., Niu, S., Zhao, J. and Gao, L. Relative variations of gut microbiota in disordered cholesterol metabolism caused by high-cholesterol diet and host genetics. Microbiol. Open., 2017, 6, 1-11. DOI: https://doi.org/10.1002/mbo3.491

Dimova, L.G., Zlatkov, N., Verkade, H.J., Uhlin, B.E. and Tietge, U.J.F. High-cholesterol diet does not alter gut microbiota composition in mice. Nutr. Metab (Lond)., 2017, 14, 15-22. DOI: https://doi.org/10.1186/s12986-017-0170-x

Ahmad, M.N. and Khatib, F. Effects of dietary saturated, monounsaturated and polyunsaturated fats on plasma lipids and lipoproteins in diabetic rats. Ecol. Fd. Nutr., 1990, 24, 141-148. DOI: https://doi.org/10.1080/03670244.1990.9991132

Reeves, P.G. Components of the AIN-93 diets as improvements in the AIN-76A diet. J. Nutr., 1997, 127, 838-841. DOI: https://doi.org/10.1093/jn/127.5.838S

National Academy of Sciences, Guide for the care and use of laboratory animals. 8th ed. Washington: National Academic Press; 2011.

Mujico, J.R., Baccan, G.C., Gheorghe, A., Diaz, L.E. and Marcos, A. Changes in gut microbiota due to supplemented fatty acids in diet-induced obese mice. Br. J. Nutr., 2013, 110, 711-720. DOI: https://doi.org/10.1017/S0007114512005612

Bonot, S., Courtois, S., Block, J.C. and Merlin C. Improving the recovery of qPCR-grade DNA from sludge and sediment. Appl. Microbiol. Biotechnol., 2010, 87, 2303-2311. DOI: https://doi.org/10.1007/s00253-010-2686-0

Remely, M., Tesar, I., Hippe, B., Gnauer, S., Rust, P. and Haslberger, A.G. Gut microbiota composition correlates with changes in body fat content due to weight loss. Beneficial Microbes, 2015, 1-9. DOI: https://doi.org/10.3920/BM2014.0104

Rinttila, T., Kassinen, A., Malinen, E., Krogius, L. and Palva, A. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J. Appl. Microbiol., 2004, 97, 1166-1177. DOI: https://doi.org/10.1111/j.1365-2672.2004.02409.x

Xu, W., Li, L., Lu, J., Luo, Y., Shang, Y. and Huang, K. Analysis of caecal microbiota in rats fed with genetically modified rice by real-time quantitative PCR. J. Fd. Sci., 2011, 76, 88-93. DOI: https://doi.org/10.1111/j.1750-3841.2010.01967.x

Matsuki, T., Watanabe, K., Fujimoto, J., Miyamoto, Y., Takada, T., Matsumoto, K., Oyaizu, H. and Tanaka, R. Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl. Environ. Microbiol., 2002, 68, 5445-5451. DOI: https://doi.org/10.1128/AEM.68.11.5445-5451.2002

Pedersen, R., Andersen, A.D., Molbak, L., Stagsted, J. and Boye, M. Changes in the gut microbiota of cloned and non-cloned control pigs during development of obesity: gut microbiota during development of obesity in cloned pigs. BMC Microbiol., 2013, 13, 30-39. DOI: https://doi.org/10.1186/1471-2180-13-30

Friedewald, W.T., Levy, R.I. and Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem., 1972, 18, 499-502. DOI: https://doi.org/10.1093/clinchem/18.6.499

Katsarou, A.I., Kaliora, A.C., Papalois, A., Chiou, A., Kalogeropoulos, N., Agrogiannis, G. and Andrikopoulos, N.K. Serum lipid profile and inflammatory markers in the aorta of cholesterol-fed rats supplemented with extra virgin olive oil, sunflower oils and oil-products. Int. J. Fd. Sci. Nutr., 2015, 66, 766-773. DOI: https://doi.org/10.3109/09637486.2015.1088936

Hashimoto, Y., Yamada, K., Tsushima, H., Miyazawa, D., Mori, M., Nishio, K., Ohkubo, T., Hibino, H., Ohara, N. and Okuyama, H. Three dissimilar high fat diets differentially regulate lipid and glucose metabolism in obesity-resistant Slc:Wistar/ST rats. Lipids, 2013, 48, 803-815. DOI: https://doi.org/10.1007/s11745-013-3805-3

de Wit, N., Derrien, M., Bosch-Vermeulen, H., Oosterink, E., Keshtkar, S., Duval, C., Johan de Vogel-van den Bosch, Kleerebezem, M., Müller, M. and Roelof van der Meer. Saturated fat stimulates obesity and hepatic steatosis and affects gut microbiota composition by an enhanced overflow of dietary fat to the distal intestine. Am. J. Physiol. Gastrointest. Liver Physiol., 2012, 303, 589-599. DOI: https://doi.org/10.1152/ajpgi.00488.2011

Buettner, R., Parhofer, K.G., Woenckhaus, M., Wrede, C.E., Kunz-Schughart, L.A., Scholmerich, J. and Bollheimer, L.C. Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. J. Mol. Endocrinol., 2006, 36, 485-501. DOI: https://doi.org/10.1677/jme.1.01909

Gnoni, A. and Giudetti, A.M. Dietary long-chain unsaturated fatty acids acutely and differently reduce the activities of lipogenic enzymes and of citrate carrier in rat liver. J. Physiol. Biochem., 2016, 72, 485-494. DOI: https://doi.org/10.1007/s13105-016-0495-3

Alphonse, P.A., Ramprasath, V. and Jones, P.J. Effect of dietary cholesterol and plant sterol consumption on plasma lipid responsiveness and cholesterol trafficking in healthy individuals. Br. J. Nutr., 2017, 117, 56-66. DOI: https://doi.org/10.1017/S0007114516004530

Hur, S.J., Min, B., Nam, K.C., Lee, E.J. and Ahn, D.U. Effect of dietary cholesterol and cholesterol oxides on blood cholesterol, lipids, and the development of atherosclerosis in rabbits. Int. J. Mol. Sci., 2013, 14, 12593-12606. DOI: https://doi.org/10.3390/ijms140612593

Subramanian, S., Goodspeed, L., Wang, S., Kim, J., Zeng, L., Ioannou, G.N., Haigh,W.G., Yeh, M.M., Kowdley, K.V., O'Brien, K.D., Pennathur, S. and Chait, A. Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice. J. Lipid Res., 2011, 52, 1626-1635. DOI: https://doi.org/10.1194/jlr.M016246

Ahmad, M.N. and Abdoh, M.J. The Effect of date palm fruit (Phoenix dactylifera L.) on serum lipid and lipoprotein concentrations in rats fed cholesterol-supplemented diet. Medit. J. Nutr. Metab., 2015, 8, 51-60. DOI: https://doi.org/10.3233/MNM-140027

Szajewska, H. and Szajewski, T. Saturated fat controversy: importance of systematic reviews and meta-analyses. Crit. Rev. Fd. Sci. Nutr., 2016, 59, 1947-1951. DOI: https://doi.org/10.1080/10408398.2015.1018037

Trautwein, E.A, Rieckhoff, D., Kunath-Rau, A. and Erbersdobler, H.F. Replacing saturated fat with PUFA-rich (sunflower oil) or MUFA-rich (rapeseed, olive and high-oleic sunflower oil) fats resulted in comparable hypocholesterolemic effects in cholesterol-fed hamsters. Ann. Nutr. Metab., 1999, 43, 159-172. DOI: https://doi.org/10.1159/000012782

Ahmad, M.N. and Takruri, H.R. The effect of dietary wheat bran on sucrose-induced changes of serum glucose and lipids in rats. Nutr. Hosp., 2015, 32, 1636-1644.

Calder, P.C. and Deckelbaum, R.J. Dietary fatty acids in health and disease: greater controversy, greater interest. Curr. Opin. Clin. Nutr. Metab. Care., 2014, 17, 111-115. DOI: https://doi.org/10.1097/MCO.0000000000000038

Diniz, Y.S., Cicogna, A.C., Padovani, C.R., Santana, L.S., Faine, L.A. and Novelli, E.L. Diets rich in saturated and polyunsaturated fatty acids: metabolic shifting and cardiac health. Nutr., 2004, 20, 230-234. DOI: https://doi.org/10.1016/j.nut.2003.10.012

Legrand, P., Beauchamp, E., Catheline, D., Pedrono, F. and Rioux, V. Short chain saturated fatty acids decrease circulating cholesterol and increase tissue PUFA content in the rat. Lipids, 2010, 45, 975-986. DOI: https://doi.org/10.1007/s11745-010-3481-5

Jurgonski, A., Juskiewicz, J. and Zdunczyk, Z. A high-fat diet differentially affects the gut metabolism and blood lipids of rats depending on the type of dietary fat and carbohydrate. Nutr. 2014, 6, 616-626. DOI: https://doi.org/10.3390/nu6020616

Newberry, E.P., Kennedy, S.M., Xie, Y., Luo, J. and Davidson, N.O. Diet-induced alterations in intestinal and extrahepatic lipid metabolism in liver fatty acid binding protein knockout mice. Mol. Cell Biochem., 2009, 326, 79-86. DOI: https://doi.org/10.1007/s11010-008-0002-4

Chen, Y.L., Peng, H.C., Wang, X.D. and Yang, S.C. Dietary saturated fatty acids reduce hepatic lipid accumulation but induce fibrotic change in alcohol-fed rats. Hepatobil Surg Nutr. 2015, 4, 172-183.

Rabot, S., Membrez, M., Bruneau, A., Gerard, P., Harach, T., Moser, M., Raymond, F., Mansourian, R. and Chou, C.J. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J., 2010, 24, 4948-4959. DOI: https://doi.org/10.1096/fj.10.164921

Caesar, R., Nygren, H., Oresic, M. and Backhed, F. Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism. J. Lipid Res., 2016, 57, 474-481. DOI: https://doi.org/10.1194/jlr.M065847

Maukonen, J., Matto, J., Satokari, R., Soderlund, H., Mattila-Sandholm, T. and Saarela, M. PCR DGGE and RT-PCR DGGE show diversity and short-term temporal stability in the Clostridium coccoides-Eubacterium rectale group in the human intestinal microbiota. FEMS. Microbiol. Ecol., 2006, 58, 517-528. DOI: https://doi.org/10.1111/j.1574-6941.2006.00179.x

Zwielehner, J., Liszt, K., Handschur, M., Lassl, C., Lapin, A. and Haslberger, A.G. Combined PCR-DGGE fingerprinting and quantitative-PCR indicates shifts in fecal population sizes and diversity of Bacteroides, bifidobacteria and Clostridium cluster IV in institutionalized elderly. Exp. Gerontol., 2009, 44, 440-446. DOI: https://doi.org/10.1016/j.exger.2009.04.002

Kurakawa, T., Ogata, K., Matsuda, K., Tsuji, H., Kubota, H., Takada, T., Kado, Y., Asahara, T., Takahashi, T. and Nomoto, N. Diversity of intestinal Clostridium coccoides group in the Japanese population, as demonstrated by reverse transcription-quantitative PCR. PLoS One, 2015, 10, 0126226. DOI: https://doi.org/10.1371/journal.pone.0126226

Lee, S.M., Han, H.W. and Yim, S.Y. Beneficial effects of soy milk and fiber on high cholesterol diet-induced alteration of gut microbiota and inflammatory gene expression in rats. Fd. Funct., 2015, 6, 492-500. DOI: https://doi.org/10.1039/C4FO00731J

David, L.A., Maurice, C.F., Carmody, R.N., Gootenberg. D.B., Button, J.E., Wolfe, B.E., Ling , A.V., Devlin, A. S., Varma, Y., Fischbach, M.A., Biddinger, S.B., Dutton, R. J. and Turnbaugh, P. J. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505, 559-563. DOI: https://doi.org/10.1038/nature12820

Patterson, E., RM, O.D., Murphy, E.F., Wall, R., O, O.S., Nilaweera, K., Fitzgerald, G.F., Cotter, P.D., Ross, R.P. and Stanton, C. Impact of dietary fatty acids on metabolic activity and host intestinal microbiota composition in C57BL/6J mice. Br. J. Nutr., 2014, 111, 1905-1917. DOI: https://doi.org/10.1017/S0007114514000117

Devkota, S., Wang, Y., Musch, M.W., Leone, V., Fehlner-Peach, H., Nadimpalli, A., Antonopoulos, D. A., Jabri, B. and Chang, E.B. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature, 2012, 487, 104-108. DOI: https://doi.org/10.1038/nature11225

Okazaki, Y. and Katayama, T. Phytic acid actions on hepatic lipids and gut microbiota in rats fed a diet high in sucrose is influenced by dietary fat level. Nutr. Res., 2020, 74, 45-51. DOI: https://doi.org/10.1016/j.nutres.2019.11.010