Super-Chromosomes: Novelties of Leukocyte Nucleus Redefine Chromosomes

Jump To References Section

Authors

  • Tumorcytogenetics Lab, Children’s Policlinic, LMU, Munich, Email: jyotichaudhuri@gmail.com ,IN

DOI:

https://doi.org/10.24906/isc/2022/v36/i5/218000

Keywords:

chromosomes, molecular genetics, ring-shaped nuclei, Hi-C, genomes, and epigenetics

Abstract

Contrary to the prevailing concept, human and mammalian chromosomes have a defined order. Both at metaphase and interphase the two homologous chromosomes tend to lie opposite each other causing a separation of the two genomes, i.e. the two parental sets of chromosomes. Each of the two chromosome sets forms a continuous chain. They join in a ring or chain to form a super-chromosome and maintain one continuous linear order of the genes during interphase and facilitate gene expression and control of alleles. The laterality of the nucleus, generated by the separation of the two sets of chromosomes, supports cellular polarity needed for immune, neuronal and secretory functions .

Downloads

Download data is not yet available.

Published

2022-09-01

How to Cite

P Chaudhuri, J. (2022). Super-Chromosomes: Novelties of Leukocyte Nucleus Redefine Chromosomes. Indian Science Cruiser, 36(5), 31 – 41. https://doi.org/10.24906/isc/2022/v36/i5/218000

Issue

Section

Feature Article

 

References

J P Chaudhuri and A Reith, Symmetric chromosomal order in leukocytes indicated by DNA image cytometry and fluorescence in situ hybridization, Analyt. Quant. Cytol. Histol., Vol 19 page 30-36, 1997.

J P Chaudhuri and J U Walther, Nuclear segmentation, condensation, and bilateral symmetry of PMN leukocytes reflect genomic order and favor immunologic function, Acta Haematol., Vol 129 page 159-168. doi: 10.1159/000343037, 2013.

J P Chaudhuri, S Karamanov, L Scott, T Liehr and J U Walther, Leukocyte nucleus reveals a linear order of chromosomes separated in two parental genomes that favors the process of gene activation, J. Histochem. Cytochem., Vol 67, No 3, page 151158, 2019. doi: 10.1369/0022155418812879.

J P Chaudhuri and J U Walther, Separation of parental genomes in human blood and bone marrow cells and its implications, Int. J. Oncology, Vol 23, page 1257-62, 2003.

J P Chaudhuri, E Kasprzycki, J R McGill, A Brøgger, J U Walther and A Reith, Biphasic chromatin structure and FISH signals reflect intra-nuclear order, Cellular Oncology, Vol 27, page 327-334, 2005.

J P Chaudhuri, S Karamanov, P Prabakaran, J R McGill and J U Walther, Identification of Parental Chromosomes in Translocations BCR-ABL, t(9;22), and PML-RARA, t(15;17), Anticancer Res., Vol28, page 3573-3578, 2008.

A Brøgger, G Ardito and B Chiarelli, The nonrandom distribution of the human chromosomes at metaphase. I. Possible interrelations among the homologous chromosomes in normal human metaphase, The Nucleus, Vol 20, No 3, page 245248, 1977.

B Chiarelli, G Ardito and A Brøgger, The nonrandom distribution of the human chromosomes at metaphase. II. Chromosomal interconnections, The Nucleus, Vol 20, No 3, page 249-251, 1977.

B Chiarelli and A Brøgger, Superchromosomal organization and its cytogenetic consequences in the eukaryota, Genetica (The Hague), Vol 49, No 2-3, page109-126, 1978.

L Manuelidis, Individual interphase chromosome domains revealed by in situ hybridiztion, Hum.

Genet., Vol71, No 4, page 288-293, 1985. doi: 10.1007/BF00388453.

L Manuelidis, A view of interphase chromosomes, Science, Vol 250, page 1533-40, 1990. doi: 10.1126/ science.2274784.

R Nagele, T Freeman, L McMorrow et al., Precise spatial positioning of chromosomes during prometaphase: evidence for chromosomal order, Science, Vol270, page 1831-1835, 1995.

R G Nagele, T Freeman, J Fazekas et al., Chromosome spatial order in human cells: evidence for early origin and faithful propagation, Chromosoma, Vol 107, page 330–338, 1998.

L B Caddle, J L Grant, J Szatkiewicz et al., Chromosome neighbourhood composition determines translocation outcomes after exposure to high-dose radiation in primary cells, Chromosome Res, Vol 15, page 1061-1073, 2007.

C Heride, M Recoul, K Kiêu, J von Hase et al., Distance between homologous chromosomes results from chromosome positioning constrains, J.Cell Sci., Vol 123, page 4063-4075, 2010. doi 1242/ jcs.066498.

E Gläss, Die Identifizierung der Chromosomen im Karyotyp der Rattenleber, Chromosoma, Vol 7, page 655–669, 1956.

E Gläss, Sonderung der Chromosomen-Sätze in Rattenleberzellen, Chromosoma, Vol 8, page 468– 492, 1957.

F Pera, Mechanismen der Polyploidisierung, Springer Berlin, page 50, 1970.

L L Hua and T Mikawa, Mitotic antipairing of homologous and sex chromosomes via spatial restriction of two haploid sets, PNAS, Vol 115, No 52, page E12235-E12244, 2018. doi.org/10.1073/ pnas.1809583115.

L G Koss, Characteristics of chromosomes in polarized normal human bronchial cells provide a blueprint for nuclear organization, Cytogenet. Cell Genet., Vol 882, page 230-237, 1998.

T Ashley, Specific end-to-end attachment of chromosomes in Ornithogalum virens, J. Cell Sci., Vol 38, page 357-367, 1979.

T Ashley and N Pocock, A proposed model of chromosomal organization in the nuclei at fertilization, Genetica, Vol 55, page 161–169, 1981.

D P Costello, Identical linear order of chromosomes in both gametes of the acoel turbellarian Polychoerus carmelensis: PNAS, Vol 67, No 4, page 1951-1958, 1970.

F A Habermann, M Cremer, J Walter, G Kreth, J von Hase, K Bauer et al., Arrangements of macro- and microchromosomes in chicken cells, Chromosome Res., Vol 9, page 569-584, 2001.

H R Cabral and G B Robert, Ring shaped nuclei in human neutrophilic leukocytes of healthy individuals: evidence of their occurrence and characteristics, Am. J. Haematol., Vol 30, page 259-260, 1989.

Y C Teh, J L Ding, L G Ng, Shu Zhen Chong, Capturing the fantastic voyage of monocytes through time and space, Front. Immunol., Vol 10 Page 834, 2019. doi: 103389/fimmu.2019.00834.

T Canoh, K Saigo and M Yamagishi, Neutrophils with ring-shaped nuclei in chronic neutrophilic leukemia, Am. J. Clin. Pathol., Vol 86, page 748751, 1986.

M M Langenhuijsen, Neutrophils with ringshaped nuclei in myeloproliferative disease, Br. J.

Haematol., Vol 58, No 2, page 227-230, 1984. doi: 10.1111/j.1365-2141.1984.tb06080.x.

A S Morgan and D T Yang, Neutrophil alphabet, Blood, Vol 121, No 18, page 3546, 2013. doi: 10.1182/blood-2012-12-472357.

J Gelgado-Serrano, R M Morales-Camacho, T Caballero-Velázquez et al., Eosinophils engulfing platelets and with ring-shaped nuclei in nivolumabassociated eosinophilia, Br. J. Haematol., Vol 188, No 6, page 812, 2020.

R M Morales-Camacho and C Prats-Martin, Eosinophils with ring-shaped nuclei in a patient treated with adalimumab, Blood, Vol 133, No 1, page 101, 2019. doi.org/10.1182/blood-2018-09-877399.

I Katayama, BM in hairy cell leukemia, Hematol. Oncol. Clinic North Am., Vol 2, page 585-602, 1988.

P Lemez, B Friedmann, J Vanásek and B Bednár, Hairy cell leukemia with ring-shaped nuclei, Blut, Vol61, No 4, page 251, 1990. doi: 10.1007/BF01744141.

C P Miles, Chromatin elements and nuclear morphology in human mitosis, Acta Cytol., Vol 8, page 356–367, 1964.

M Gacsi, G Nagy, G Pinter, A G Basnakian and G Bánfalvi, Condensation of interphase chromatin in nuclei of synchronized CHO (CGO-K1) cells, DNA Cell Biol., Vol 24, page 43–53, 2005.

G Bánfalvi, Linear connection of condensing chromosomes in nuclei of synchronized CHO cells, DNA Cell Biol., Vol 25, page 541-545, 2006.

N A Kinney, I V Sharakov and A V Onufriev, Chromosome-nuclear envelope attachments affect interphase chromosome territories and entanglement, Epigenetics & Chromatin, Vol 11, No 1, page 3, 2018.

B Dutrillaux, M E Croquette, E Viegas-Pequignot, A Aurias, J Coget, J Couturier and J Lejeune J, Human somatic chromosome chains and rings. A preliminary note on end-end fusion, Cytogenet.

Cell Genet., Vol 20, page 70-77, 1978.

D E Comings, Arrangement of chromatin in the nucleus, Hum. Genet., Vol 53, page 131-143, 1980.

B Jódar, E Ferrer and J R Lacadena, On the ordered arrangement of the haploid complement in radial metaphases of secondary meiocytes of male grasshoppers, E. pulvinatus gallicus, Theor.Appl. Genet., Vol 70, No 3, page 240-244, 1985. doi: 10.1007/BF00304905.

S W Brown and U Nur, Heterochromatic chromosomes in the Coccids, Science, Vol 145, page 130-136, 1964. doi: 10.1126/science.145.3628.130.

U Nur, Heterochromatization and euchromatization of whole genomes in scale insects (Coccoidea: Homoptera), Dev. Suppl., Vol 1990, page 29-34, 1990.

A G de la Filia, A J Mongue, J Dorrens et al., Males that silence their father’s genes: Genomic imprinting of a complete haploid genome, Mol.Biol. Evol., Vol 38, No 6, page 2566-2581, 2021.

doi:10.1093/molbev/msab052.

B Keim, The human genome in 3 dimensions, Wired,www.wired.com/2009/10/fractal-genome, 2009.

E Lieberman-Aiden, N L van Berkum, L Williams et al., Comprehensive mapping of long-range interactions reveals folding principles of the human genome, Science, Vol 326, No 5950, page 289-293, 2009.

M Hoehe, G Church, H Lehrach et al., Multiple haplotype-resolved genomes reveal populationpatterns of gene and protein diplotypes, Nat.Commun., Vol 5, page5569, 2014. Doi: 10.1038/ ncomms6569.

M R Hoehe, R Herwig, Q Mao et al., Significant abundance of cis configurations of coding variants in diploid human genomes, Nucleic Acids Res., Vol 47, No 6, page 2981-2995, 2019. doi: 10.1093/nar/ gkz031.

P Slijepcevic, M P Handle, S D Bouffler, P Landsdorp and P E Bryant, Telomere length, chromatin structure and chromosome fusigenic potential, Chromosoma, Vol 106, page 413-421, 1997.

M Smith Eric, F Pendlebury Devon and J Nandakumar, Structural biology of telomeres and

telomerase, Cell. Mol. Life Sci., Vol 77, No 1, page 61-79, 2020.

T Haaf and M Schmid, Chromosome topology in mammalian interphase nuclei, Exp Cell Res., Vol

, No 2, page 325-32, 1991. doi: 10.1016/0014-4827(91)90048-y.

A J Fritz, A R Barutcu, L Martin-Buley et al., Chromosomes at work: Organization of chromosome territories in the interphase nucleus, J. Cell. Biochem., Vol 117, No 1, page 9-19, 2016.

doi: 10.1002/jcb.25280.

S Collombe, Y A Pérez-Rico, K Ancelin, N Servant and Heard E, Bioinformatic analysis of single-cell

Hi-C data from mouse embryo, Methods Mol. Biol., Vol 2214, page 295-316, 2021. doi:10.1007/978-1-

-0958-3-20.

D J Burgess, Chromosome structure at micro-scale,Nat. Rev. Genet., Vol 21, No 6, page 337, 2020. doi:

/s41576-020-0243-y.

E Gelali, G Girelli, M Matsumoto et al., iFISH is a publically available resource enabling versatile

DNA FISH to study genome architecture, Nat. Commun., Vol 10, page 1636, 2019. doi: doi.

org/10.1038/s41467-019-09616-w.

M Kmita and D Duboule, Organizing axes in time and space; 25 years of collinear tinkering, Science,

Vol 301, page 331-333, 2003.

P D Waters, H R Patel, A Ruiz-Herrera … J A Marshall, Graves: Microchromosomes are building

blocks of bird, reptile, and mammal chromosomes, PNAS US 2021, Vol 118, No 45, e2112494118,

doi: 10.1073/pnas.2112494118.

A Y Aksenova and S M Mirkin, At the beginning of the end and in the middle of the beginning:

structure and maintenance of telomeric DNA repeats and interstitial Telomeric Sequences,

Genes (Basel), Vol 2019, page 10, 2019. doi:10.3390/ genes10020118.

J P Chaudhuri and J U Walther, Chromosomes and genome organization in eukaryots, Indian

Science Cruiser, Vol 16, No 2, page 27-34, 2002.