Photo-catalytic Degradation of Methyl Orange Dye using ZnS and N-doped ZnS Nanoparticles under Visible Radiation

Jump To References Section

Authors

  • Chemistry Department, Haramaya University, Post Box: 138, Dire Dawa ,ET
  • Chemistry Department, Haramaya University, Post Box: 138, Dire Dawa ,ET
  • Chemistry Department, HNB Garhwal Central University, Srinagar, Uttarakhand ,IN
  • Chemistry Department, Panjab University, Chandigarh - 160014 ,IN

DOI:

https://doi.org/10.18311/jsst/2015/4398

Keywords:

Methyl Orange, Photo Catalysis, Nanoparticles, Rate of Degradation, XRD TEM.

Abstract

ZnS and N-doped-ZnS nanoparticles were prepared by aqueous chemical method under optimal conditions and characterized using XRD, TEM and UV-Visible spectroscopic techniques. As-synthesized nanomaterials were used as a photo-catalysts for the degradation of Methyl Orange (MO) dye. Effects of photo-catalyst load, pH, and substrate initial concentration on degradation of the dye in aqueous solution have been investigated. Maximum degradation (76.56 %) of methyl orange was observed using optimum pH 6 and catalyst load 250 mgL-1.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2015-12-01

How to Cite

Gebrezgiabhiar, G., Yadav, O. P., Yadav, M., & Jain, D. V. S. (2015). Photo-catalytic Degradation of Methyl Orange Dye using ZnS and N-doped ZnS Nanoparticles under Visible Radiation. Journal of Surface Science and Technology, 31(3-4), 184–189. https://doi.org/10.18311/jsst/2015/4398

 

References

C. Hun and Z. Y. Wang, Chemosphere., 39, 2107 (1999).

J. Kiwi, C. M. Pulgarine and P. P. Gratzel, Appl. Catal. B.: Environ., 3, 85 (1993).

J. Li, Y. Xu, Y. Liu, D. Wu, and Y. Sun, Chin. Particuol., 2, 266 (2004).

W. Z. Tang and H. An, Chemosphere, 31, 4171 (1995).

D. F. Oills and H. Al-Ekabi, Photocatalytic Purification and Treatment of Water and Air, Elsevier, Amsterdam (1993).

M. R. Hoffmann, T. S. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev., 95, 69 (1995).

T. V. Gerven, G. Mul, J. Moulijn, and A. Stankiewicz, Chem. Eng. Proc., 46, 781 (2007).

A. B. Patil, R. K. Patil, and K. S. Pardeeshia, J. Hazard. Mater., 183, 315 (2010).

G. Keros, T. Abi and O. P. Yadav, J. Surface Sci. Technol., 29, 1 (2013).

E. Alemseged, O. P. Yadav and R. K. Bachheti, International J. Chem. Tech. Research, 5, 1452 (2013).

W. Tesfay, O. P. Yadav, T. Abi, and J. Kaushal, Bull. Chem. Soc. Ethiopia, 27, 1 (2013).

K. Loghman, Z. Salar, J. Nanostructure in Chemistry, 3, 32 (2013).

Y. Ruzmanova, M. Stoller and A. Chianese, Chem. Engg. Transaction, 32, 2260 (2013).

M. Zheng and J. Wu, Appl. Sur. Sci., 255, 5656 (2009).

R. Asahi and T. Morikawa, J. Chem. Phys., 339, 57 (2007).

M. El-Kemary, H. El-Shamy and I. El-Mehasseb, J. Lumin., 130, 2327 (2010).

M. S. T. Goncalves, F. M. A. Oliveira-Campos, S. M. M. Pinto, S. M. P. Plasencia and P. R. Queiroz, Chemosphere, 39, 781 (1999).

M. Barjasteh-Moghaddam and A. Habibi-Yangjeh, J. Iran. Chem. Soc., 8, S172 (2010).

H. R. Pouretedal, A. Norozi, H. M. Keshavarz, and A. Semnani, J. Hazard. Mater., 162, 674 (2009).