Kinetics of Cu (II) Adsorption on Organo-Montmorillonite


Affiliations

  • Gauhati University, Department of Chemistry, Guwahati, Assam, 781014, India

Abstract

Commercially available montmorillonite (Mt) was converted to organo-montmorillonite by grafting with tetramethylammonium (TMA) and tetrapropylammonium (TPA) cations to obtain potential adsorbents for metal cations. TMA-Mt and TPA-Mt showed IR bands at 1489 cm-1 and 1389 cm-1 attributed to C-N vibrations in tertiary amines and ơas (C-H) bending vibrations due to CH3 groups of the (CH3)4N+ cation, indicating intercalation of Mt with TMA and TPA. The basal spacings obtained from the XRD data showed marginal increase due to introduction of the quarternary ammonium ions. The CEC of Mt, TMA-Mt and TPA-Mt were 220, 294 and 257 cmol/g respectively showing an increasing order with modification of the clay. Cu(II) adsorption on the adsorbents showed that the interactions conformed to second order kinetics with the second order rate coefficient of 1.06 × 10-2, 9.00 × 10-3 and 1.31 × 10-2 L mg-1 min-1 respectively for Mt, TMA-Mt and TPA-Mt.

Keywords

Cu(II) Adsorption Kinetics, TMA-Montmorillonite, TPA-Montmorillonite.

Subject Discipline

Chemistry

Full Text:

References

M. A. Barakat, Arabian Journal of Chemistry, 4, 361 (2011).

S. Babel and T. A. Kurniawan, Chemosphere, 54, 951 (2004).

Copper: Health Information Summary, Environmental Fact Sheet. New Hampshire Department of Environmental Services, ARD-EHP-9 (2005).

W. H. Hoidy, M B. Ahmad, E. A. J. Al Mulla and N. A. Bt Ibrahim, American Journal of Applied Sciences, 6, 1567 (2009).

F. Bergaya, B. K. G. Theng and G. Lagaly, Handbook of Clay Science, First Edition. Elsevier (2006).

G. W. Beall, Appl. Clay Sci., 24, 11 (2003).

F. Bergaya and M. Vayer, Appl. Clay Sci., 12, 275 (1997).

N. Greesh, P. C. Hartmann, V. Cloete and R. D. Sanderson, J. Colloid Interface Sci., 319, 2 (2008).

N. Hamdi, S. Hamdaoui, and E. Srasra, Int. J. Environ. Res., 8, 367 (2014).

J. Madejova and P. Komadel, Clays and Clay Minerals, 49, 410 (2001).

M. Xu, Y. S. Choi, Y. K. Kim, K. H. Wang and I. J. Chung, Polymer, 44, 6387 (2003).

Z. R. Hinedi, C. T. Johnston, and C. Erickson. Clays and Clay Minerals, 41, 87 (1993).

J. Madejova, Vibrational Spectroscopy, 31, 1 (2003).

M. Kozak and L. Domka, J. Physics Chemistry Solids, 65, 441 (2004).

Y Li, L Zeng, Y Zhou, T Wang, and Y Zhang, J. Nanomat. 167402 (2014). Available from: http://dx.doi.org/10.1155/2014/167402.

M. Yuehonga, Z. Jianxi, H. Hongpinga, Y. Penga, S. Weia and L. Dong, Spectrochimica Acta Part A, 76, 122 (2010).

Z. Navrátilová, P. Wojtowicz, L. Vaculíková and V. Šugárková, Acta Geodyn. Geomater., 4, 59 (2007).

W. F. Jaynes, S. A. Boyd, Soil Sci. Soc. Am. J., 55, 43 (1991).

G. Lagaly, Solid State Ionics, 22, 43 (1986).

H. P. He, Y. H. Ma, J. X. Zhu, P. Yuan and Y. H. Qing, Appl. Clay Sci., 48, 67 (2010).

J. Zhu, Y. Qing, T. Wang, R. Zhu, J. Wei, Q. Tao, P. Yuan and H. He, J. Colloid Interface Sci., 360, 386 (2011).

Y. S. Ho, Scientometrics 59, 171 (2004).

Y. S. Ho, J. Hazard. Mater., 136, 681 (2006).

B. H. Hameed, D. K. Mahmoud and A. L. Ahmad, J. Hazardous Mater., 158, 65 (2008).


Refbacks

  • There are currently no refbacks.