Effect of Growing Conditions and Post Treatments on Calcium Phosphate Films Obtained by Electrode Position

Jump To References Section

Authors

  • Departamento de fí­sica y matemática, Universidad Autónoma de Manizales, Antigua Estación del Ferrocarril, Manizales, Caldas ,CO
  • Departamento de fí­sica y matemática, Universidad Autónoma de Manizales, Antigua Estación del Ferrocarril, Manizales, Caldas ,CO
  • Departamento de electrónica y automatización, Universidad Autónoma de Manizales, Antigua Estación del Ferrocarril, Manizales, Caldas ,CO
  • Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Libramiento Norponiente #2000, Fraccionamiento Real de Juriquilla, Querétaro 76230 ,MX
  • Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Libramiento Norponiente #2000, Fraccionamiento Real de Juriquilla, Querétaro 76230 ,MX

DOI:

https://doi.org/10.18311/jsst/2019/21052

Keywords:

Brushite, Calcium Phosphate, Electrodeposition, Hydroxyapatite

Abstract

The effect of growing conditions and post treatments in electrodeposited calcium phosphate films on 316 L stainless steel is presented. The concentration and pH of electrolyte solution and the potential values for the electrodeposition process were determined based on a study of cyclic voltammetry curves. The electrolyte concentration was fixed at 0.025 M ((NH4) H2PO4) and 0.042 M (Ca(NO3)2.4H2O), choosing a pH = 5 as the better condition for the films deposition. In addition, the electrolyte temperature was varied between room temperature and 60°C to determine the influence of this parameter on the deposited films. Films were characterized using Fourier Transform Infrared Spectroscopy, X-ray diffraction and Scanning electron microscopy equipped with energy dispersive spectroscopy. The as deposited films at -1.2 V and -1.7 V exhibit the dicalcium phosphate dihydrate phase (Brushite) while thermal post treatment favor the formation of octacalcium phosphate in amorphous phase, and basic treatment tend to produce the Hydroxyapatite phase. The suggested mechanism for the HAp phase formation, after the basic treatment, consists in providing the necessary OH- groups to complete the synthesis process.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2019-06-25

How to Cite

Jiménez-Garcí­a, F. N., Giraldo-Torres, L. R., Segura-Giraldo, B., Lorena Giraldo-Betancur, A., & Muñoz-Saldaña, J. (2019). Effect of Growing Conditions and Post Treatments on Calcium Phosphate Films Obtained by Electrode Position. Journal of Surface Science and Technology, 35(1-2), 67–76. https://doi.org/10.18311/jsst/2019/21052

Issue

Section

Articles
Received 2018-05-03
Accepted 2018-09-07
Published 2019-06-25

 

References

L. Vecbiskena, ‘Nano-Sized Calcium Phosphates: Synthesis Technique and Their Potential in Biomedicine'; de Recent Global Research and Education: Technological Challenges, 25 (2017). DOI: https://doi.org/10.1007/978-3-319-46490-9_4

M. Ebrahimi, M. G. Botelho and S. V. Dorozhkin, Mater. Sci. Eng., 71, 1293 (2017). https://doi.org/10.1016/j.msec.2016.11.039 PMid:27987685 DOI: https://doi.org/10.1016/j.msec.2016.11.039

A. Szcześ, L. Hołysz and E. Chibowski, Adv. Colloid Interface Sci., 20, 4 (2017).

S. A. Oma, J. Ballare and S. M. Ceré, Electrochim. Acta, 203, 309 (2016). https://doi.org/10.1016/j.electacta.2016.01.051 DOI: https://doi.org/10.1016/j.electacta.2016.01.051

S. Agarwala, J. Curtin, B. Duffy and S. Jaiswal, Mater. Sci. Eng. C, 68, 948 (2016.) DOI: https://doi.org/10.1016/j.msec.2016.06.020

A. Aziz, R. Backly, N. Taha, A. Maghraby and S. Kandil, Mater. Sci. Eng. C, 76, 1188 (2017). https://doi.org/10.1016/j.msec.2017.02.053 PMid:28482485 DOI: https://doi.org/10.1016/j.msec.2017.02.053

L. Leena and S. S. Bhupinder, Journal of Nanomaterials and Molecular Nanotechnology, 4, 1 (2015).

N. Tshepo P., T. Mira, H. Margit, H. B. Robert and T. Chris, Surf. Coating. Tech., 294, 153 (2016). https://doi.org/10.1016/j.surfcoat.2016.03.045 DOI: https://doi.org/10.1016/j.surfcoat.2016.03.045

G. R. Bojan, V. Miroljub, Å . Maja, V. S. Nikola S. and R. A. Nenad, Ceram. Int., 42, 411 (2016). DOI: https://doi.org/10.1016/j.ceramint.2015.08.125

M. A. Cruza, G. Ruiza, A. Faria, D. Zancanela, L. Pereira, L. Ciancaglinia and A. Ramosa, Appl. Surf. Sci., 370, 459 (2016). https://doi.org/10.1016/j.apsusc.2015.12.250 DOI: https://doi.org/10.1016/j.apsusc.2015.12.250

R. Asria and W. Harunb, Journal of the Mechanical Behavior of Biomedical Materials, 57, 95 (2016). https://doi.org/10.1016/j.jmbbm.2015.11.031 PMid:26707027 DOI: https://doi.org/10.1016/j.jmbbm.2015.11.031

D. Sidane, H. Rammal, A. Beljebbar, S. C. Gangloff, D. Chicot, F. Velard, H. Khirredine, A. Montagne and H. Kerdjoudj, Mater. Sci. Eng. C, 72, 650 (2017). https://doi.org/10.1016/j.msec.2016.11.129 PMid:28024634 DOI: https://doi.org/10.1016/j.msec.2016.11.129

J. Ballarre, D. Lopez, W. Schreiner, A. Duran and S. M. Cere, Appl. Surf. Sci., 253, 7260 (2007). https://doi.org/10.1016/j.apsusc.2007.03.007 DOI: https://doi.org/10.1016/j.apsusc.2007.03.007

Y. Zeng, X. Pei, S. Yang, H. Qin, H. Caid, S. Hu, L. Suig, Q. Wan and J. Wangd, Surf. Coating Tec., 286, 72 (2016). https://doi.org/10.1016/j.surfcoat.2015.12.013 DOI: https://doi.org/10.1016/j.surfcoat.2015.12.013

D. H. He, P. Wang, P. Liu, X. K. Liu, F. C. Ma and J. Zhao, Surf. Coating Tec., 301, 6 (2016). https://doi.org/10.1016/j.surfcoat.2016.07.005 DOI: https://doi.org/10.1016/j.surfcoat.2016.07.005

A. Vladescua, M. Braic, F. Ak Azem, I. Titorencu, V. Braic, V. Pruna, A. Kiss, A. C. Parau and I. Birlik, Appl. Surf. Sci., 354, 373 (2015). https://doi.org/10.1016/j.apsusc.2015.05.059 DOI: https://doi.org/10.1016/j.apsusc.2015.05.059

D.-Y. Lin and X.-X. Wang, Colloids and Surfaces B: Biointerfaces, 82, 637 (2011). https://doi.org/10.1016/j.colsurfb.2010.09.025 PMid:20965703 DOI: https://doi.org/10.1016/j.colsurfb.2010.09.025

R. A. Surmenev, M. A. Surmeneva and A. A. Ivanova, Acta Biomaterialia, 10, 557 (2014). https://doi.org/10.1016/j.actbio.2013.10.036 PMid:24211734 DOI: https://doi.org/10.1016/j.actbio.2013.10.036

B. Ben-Nissan, C. Chai and L. Evans, ‘Crystallographic and spectroscopic characterization and morphology of biogenic and synthetic apatites'; Encyclopedic Handbook of Biomaterials and Bioengineering: Part B. New York: Marcel Dekker, (1995).

C. Ocampo, D. Villegas and L. Veleva, J. Electrochem. Soc., 152, C692 (2005). https://doi.org/10.1149/1.2030355 DOI: https://doi.org/10.1149/1.2030355

D. Lin and X. Wang, Surf. Coating Tec., 204, 3205 (2010). https://doi.org/10.1016/j.surfcoat.2010.03.020 DOI: https://doi.org/10.1016/j.surfcoat.2010.03.020

M. C. Wang, H. T. Chen, W. J. Shih, H. F. Chang, M. H. Hon and I. M. Hung, Ceram. Int., 41, 2999 (2015). https://doi.org/10.1016/j.ceramint.2014.10.135 DOI: https://doi.org/10.1016/j.ceramint.2014.10.135

W. Wu and G. Nancollas, Pure Appl. Chem., 70, 1867 (1998). https://doi.org/10.1351/pac199870101867 DOI: https://doi.org/10.1351/pac199870101867

E. Meng, S. Guan, H. Wang, L. Wang, S. Z. J. Hu, C. Ren, J. Gao and Y. Feng, Appl. Surf. Sci., 257, 4811 (2011). https:// doi.org/10.1016/j.apsusc.2010.12.073 DOI: https://doi.org/10.1016/j.apsusc.2010.12.073

D. Gopi, V. Collins, A. Prakash, L. Kavitha, S. Kannan, P. Bhalaji, E. Shinyjoy and J. Ferreira, Corrosion Sci., 53, 2328 (2011). https://doi.org/10.1016/j.corsci.2011.03.018 DOI: https://doi.org/10.1016/j.corsci.2011.03.018

A. Tsetsekou, D. Brasinika, V. Vaou and E. Chatzitheodoridis, Mater. Sci. Eng. C., 43, 555 (2014). https://doi.org/10.1016/j.msec.2014.07.011 PMid:25175250 DOI: https://doi.org/10.1016/j.msec.2014.07.011

M. B. Kannan, Surf Coating Tech., 301, 36 (2016). https:// doi.org/10.1016/j.surfcoat.2015.12.044 DOI: https://doi.org/10.1016/j.surfcoat.2015.12.044

W. J. Shih, Y. H. Chen, S. H. Wang, W. L. Li, M. H. Hon and M. C. Wang, J. Cryst. Growth, 285, 633 (2005). https://doi.org/10.1016/j.jcrysgro.2005.08.042 DOI: https://doi.org/10.1016/j.jcrysgro.2005.08.042

M. Falk, Spectrochim. Acta., 40, 43 (1984). https://doi.org/10.1016/0584-8539(84)80027-6 DOI: https://doi.org/10.1016/0584-8539(84)80027-6

B. S. I. Petrov, Spectrochim. Acta., 23A, 2637 (1967). https:// doi.org/10.1016/0584-8539(67)80155-7 DOI: https://doi.org/10.1016/0584-8539(67)80155-7

D. Gopi, J. Indira and L. Kavitha, Surf Coating Tech., 206, 2859 (2013). https://doi.org/10.1016/j.surfcoat.2011.12.011 DOI: https://doi.org/10.1016/j.surfcoat.2011.12.011

P. Kamalanathan, S. Ramesh, L. Bang, A. Niakan, C. Tan, J.Purbolaksono, H. Chandran and W. Teng, Ceram. Int., 40, 1634 (2014). https://doi.org/10.1016/j.ceramint.2014.07.074 DOI: https://doi.org/10.1016/j.ceramint.2014.07.074

E. Boanini, M. Gazzano and A. Bigi, Acta Biomater, 6, 1882 (2010). https://doi.org/10.1016/j.actbio.2009.12.041 PMid:20040384 DOI: https://doi.org/10.1016/j.actbio.2009.12.041

R. LeGeros, J. LeGeros, O. Trautz and E. Klein, Dev. Appl. Spectrosc., 7, 3 (1970). https://doi.org/10.1007/978-1-4684-8589-9_1 DOI: https://doi.org/10.1007/978-1-4684-8589-9_1

J. Katic, M. Metikos-Hukovi, S. Skapin, M. Petravic and M. Varasanec, Electrochim. Acta, 127, 173 (2014). https://doi.org/10.1016/j.electacta.2014.01.168 DOI: https://doi.org/10.1016/j.electacta.2014.01.168

K. Ohta, M. Kikuchi, J. Tanaka and H. Eda, Chem. Lett., 31 (2002). https://doi.org/10.1246/cl.2002.894 DOI: https://doi.org/10.1246/cl.2002.894

M. S. Shojai, M. T. Khorasani and A. Jamshidi, J. Cryst. Growth, 361, 73 (2012). https://doi.org/10.1016/j.jcrysgro. 2012.09.010 DOI: https://doi.org/10.1016/j.jcrysgro.2012.09.010

S. Arifuzzaman and S. Rohani, J. Cryst. Growth, 267, 624 (2004). https://doi.org/10.1016/j.jcrysgro.2004.04.024 DOI: https://doi.org/10.1016/j.jcrysgro.2004.04.024

R. Alvarez, L. A. Evans, P. J. Milham and M. A. Wilson, Geoderma, 118, 245 (2004). https://doi.org/10.1016/S00167061(03)00207-6 DOI: https://doi.org/10.1016/S0016-7061(03)00207-6

S. Dorozhkin, Calcium Orthophosphates, ‘Applications in Nature'; Singapore: Temasek, Boulevard (2012) DOI: https://doi.org/10.1201/b12312

S. Ramesh, C. Y. Tan, M. Hamdi, I. Sopyan and W. D. Teng, ‘The influence of Ca/P ratio on the properties of hydroxyapatite bioceramics'; de International Conference on Smart Materials and Nanotechnology in Engineering (2007). DOI: https://doi.org/10.1117/12.779890