Development and Characterisation of W and W-25% Ta Composite Coatings on Steel Material

Jump To References Section

Authors

  • School of Mechanical and Building Science, VIT University, Chennai Campus, Chennai - 600127 ,IN
  • School of Mechanical and Building Science, VIT University, Chennai Campus, Chennai - 600127 ,IN
  • School of Applied Science, VIT University, Chennai Campus, Chennai - 600127 ,IN

DOI:

https://doi.org/10.18311/jsst/2020/20109

Keywords:

RF Sputtering, Thin Films, Tungsten

Abstract

Nanostructured Tungsten (W) and Tungsten-Tantalum (W-25% Ta) thin films are generated on Reduced Activation Ferritic Martensitic (RAFM) steel substrates. The developed thin films are then analysed for their adhesive strength, hardness and elastic modulus properties. The addition of Tantalum by 25% as a composite material in Tungsten thin-film coating has increased the ductility and decreased the hardness of the film at room temperature condition. Tantalum addition has decreased the adhesion capability of the Tungsten film to the steel substrate. In this study, adhesion analysis is qualitatively assessed by indentation test, and hardness along with modulus are calculated using nanoindentation test.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2021-04-09

How to Cite

Lakshmi Kanth Konuru, S., Umasankar, V., & Kumar Sarma, A. (2021). Development and Characterisation of W and W-25% Ta Composite Coatings on Steel Material. Journal of Surface Science and Technology, 36(3-4), 103–108. https://doi.org/10.18311/jsst/2020/20109

 

References

G. Federici et al., J. Nucl. Fusion, 41, 1967 (2001). https:// doi.org/10.1088/0029-5515/41/12/218. DOI: https://doi.org/10.1088/0029-5515/41/12/218

A. Suslova, O. El-Atwani, S.S. and A. Hassanein. J. Nucl. Fusion, 55, 33 (2015). https://doi.org/10.1088/00295515/55/3/033007. DOI: https://doi.org/10.1088/0029-5515/55/3/033007

Owais A. Waseem and Ho Jin Ryu. Tungsten-Based Composites for Nuclear Fusion Applications, InTech, (2016). https://doi.org/10.5772/62434.

N. J. Dutta, N. Buzarbaruah and S. R. Mohanty. J. Nucl. Mater, 452, 51 (2014). https://doi.org/10.1016/j.jnucmat.2014.04.032. DOI: https://doi.org/10.1016/j.jnucmat.2014.04.032

R. E. Nygren, R. Raffray, D. Whyte, M. A. Urickson, M. Baldwin and L. L. Snead. Nucl. Mater, 417, 451 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.289. DOI: https://doi.org/10.1016/j.jnucmat.2010.12.289

I. Smid, M. Akiba, G. Vieider and L. Plöchl. J. Nucl. Mater, 258, 160 (1998). https://doi.org/10.1016/S00223115(98)00358-4. DOI: https://doi.org/10.1016/S0022-3115(98)00358-4

Owais A. Waseem and Ho Jin Ryu. Tungsten as first wall material, InTech (2016).

Owais A. Waseem and Ho Jin Ryu Tungsten-Based Composites for Nuclear Fusion Applications, InTech (2016). https://doi.org/10.5772/62434. DOI: https://doi.org/10.5772/62434

I. E. Garkusha, V. A. Makhlaj, N. N. Aksenov, O. V. Byrka, S. V. Malykhin, A. T. Pugachov, B. Bazylev, I. Landman, G. Pinsuk and J. Linke. High power plasma interaction with tungsten grades in ITER relevant conditions, Journal of Physics: Conference Series, 591 (2015). https://doi.org/10.1088/1742-6596/591/1/012030. DOI: https://doi.org/10.1088/1742-6596/591/1/012030

M. Dias, R. Mateus, N. Catarino, N. Franco, D. Nunes, J. B. Correia, P. A. Carvalho, K. Hanada, C. Sarbu and E. Alves. J. Nucl. Mater, 442, 69 (2013). https://doi.org/10.1016/j.jnucmat.2013.08.010. DOI: https://doi.org/10.1016/j.jnucmat.2013.08.010

M. Kaufmann and R. Neu. Fus. Eng. Design, 82, 521 (2007). https://doi.org/10.1016/j.fusengdes.2007.03.045. DOI: https://doi.org/10.1016/j.fusengdes.2007.03.045

V. N. Antoniadis and N. Bilalis. J. Mater Proce. Tech., 43, 481 (2003).