Mesoporous Multi-Metal Citrates as Scavengers for Organic Dyes

Jump To References Section

Authors

  • Department of Applied Chemistry, Delhi Technological University, Bawana Road, Delhi - 110042 ,IN
  • Department of Applied Chemistry, Delhi Technological University, Bawana Road, Delhi - 110042 ,IN
  • Department of Applied Chemistry, Delhi Technological University, Bawana Road, Delhi - 110042 ,IN

DOI:

https://doi.org/10.18311/jsst/2018/18112

Keywords:

Adsorption, Dyes, Mesoporous, Water Pollution.
Inorganic Materials

Abstract

In this work we have established excellent adsorption properties of Multi-metal citrate complexes for the capture of Organic dyes. These complexes exhibit mesoporous character with pore diameter ≈ 40í… and narrow pore size distribution in their structure as demonstrated by fitting experimental adsorption data into Barrett, Joyner and Halenda (BJH) and Density Functional Theory (DFT) models. Thus these materials have the potential of being used as scavengers for dye stuff removal from industrial waste discharge in the water stream and may replace the high cost carbon adsorbents to capture dye molecules and curb water pollution with resultant toxic, carcinogenic and mutagenic effects of dye stuff on living beings. The mesoporous Zinc, Nickel, Iron, Copper multi-metal citrate complexes with different combinations of these metal ions and citric acid linker have been synthesized under mild hydrothermal conditions through green synthetic pathways. Because of their biocompatibility and non toxicity, these low cost mesoporous materials may prove boon for transport of dyes used as contrast agents during diagnostics applications due to their increased image contrast and chemical stability.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2018-06-21

How to Cite

Raju, U., Varshney, A., & Kumar, A. (2018). Mesoporous Multi-Metal Citrates as Scavengers for Organic Dyes. Journal of Surface Science and Technology, 34(1-2), 50–57. https://doi.org/10.18311/jsst/2018/18112

Issue

Section

Articles
Received 2017-10-16
Accepted 2018-02-28
Published 2018-06-21

 

References

A. Scott, Chem. Eng. News, 93, 18 (2015).

Z. Carmen and S. Daniela, ‘Textile Organic DyesCharacteristics, Polluting Effects and Separation/Elimination Procedures from Industrial Effluents - A Critical Overview' in Organic pollutants Ten Years After the Stockholm Convention - Environmental and Analytical update, Ed. T. Puzyn, InTech, Croatia (2012).

M. R. Senapati, ‘Puja Immersions: Water Bodies Polluted Beyond Repair', The Pioneer, Bhubaneswar, 15 Oct 2016.

B. Shi, G. Li, D. Wang, C. Feng and H. Tang, J. Hazard. Mater., 143, 567 (2007). crossref PMid:17070993 5. Y. Zhou, Z. Liang and Y. Wang, Desalination, 225, 301 (2008).

F. R. Reinoso, J. Rouquerol, K. K. Unger and K. S. W. Sing, Eds., ‘Characterization of Porous Solids III', 1stEd., Elsevier, Amsterdam (1994).

H. M. Freeman, ‘Standard Handbook of Hazardous Waste Treatment and Disposal', 2nd Ed., McGraw-Hill, New York (1989).

T. G. Danis, T. A. Albanis, D. E. Petrakis and P. J. Pomonis, Water Res., 32, 295 (1998).

A. Dabrowski, Adv. Colloid Interface Sci., 93(1-3), 135 (2001).

D. D. Do, ‘Adsorption analysis: Equilibria and Kinetics', Imperial College Press, London (1998).

Y. H. Huang, C. L. Hsueh, C. P. Huang, L. C. Su and C. Y. Chen, Separ. Purif. Tech., 55, 23 (2007).

M. M. Allingham, J. M. Cullen, C. H. Giles, S. K. Jain and J. S. Woods, J. Chem. Tech. Biotechnol., 8, 108 (1958).

S. Wang, H. Li and L. Xu, J. Colloid Interface Sci., 295, 71 (2006).

G. McKay, M. J. Bino and A. R. Altamemi, Water Res., 19, 491 (1985).

S. R. Batten, N. R. Champness, X. M. Chen, J. GarciaMartinez, S. Kitagawa, L. Ohrstrom, M. O'Keeffe, M. P. Suh and J. Reedijk, Pure Appl. Chem., 85, 1715 (2013).

K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pieroti, J. Rouquerol and T. Siemieniewska, Pure Appl. Chem., 57, 603 (1985).

S. C. Wu, X. You, C. Yang and J. H. Cheng, Water Sci. Technol., 75, 2800 (2017).

M. Zubair, N. Jarrah, M. S. Manzar, M. Al-Harthi, M. Daud, N. D. Mu'azu, S. A. Haladu, J. Mol. Liq., 230, 344 (2017).

G. A. Baig, Indian J. Fibre Text, 37, 265 (2012).

U. Raju, S. G. Warkar and A. Kumar, J. Mol. Struct., 1133, 90 (2017).

B. Chen, M. Eddaoudi, T. M. Reineke, J. W. Kampf, M. O'Keeffe and O. M. Yaghi, J. Am. Chem. Soc., 122, 11559 (2000).

A. Schaate, P. Roy, T. PreuíŸe, S. J. Lohmeier, A. Godt and P. Behrens, Chem. Eur. J., 17, 9320 (2011).

K. Byrappa and M. Yoshimura, ‘Handbook of Hydrothermal Technology', 1st Ed., William Andrew, New York (2001).

R. A. Laudise, ‘The Growth of Single Crystals', Prentice-Hall, New York (1970).

E. P. Barrett, L. G. Joyner, P. P. Halenda, J. Am. Chem. Soc., 73, 373 (1951).

M. E. Davis, Nature, 417, 813 (2002).

D. Thetford, ‘Triphenylmethane and Related Dyes' KirkOthmer Encyclopedia of Chemical Technology (2000).

S. Wahyuningsih, A. H. Ramelan, D. K. Wardani, F. N. Aini, P. L. Sari, B. P. N. Tamtama and Y. R. Kristiawan, IOP Conf. Ser.: Mater. Sci. Eng., 193 (2017).

M. C. Grieve, R. M. Griffin and R. Malone, Sci. Justice, 38(1), 27 (1998).

L. Addnan, Bas. J. Vet. Res., 15, 271 (2016).

A. Baran, A. Fiedler, H. Schulzb and M. Baranska, Anal. Methods, 2, 1372 (2010).