Structural, Optical and Dielectric Characterization of Guanidine Acrylate (GuAcr) NLO Single Crystals

Jump To References Section

Authors

  • Department of Physics, St. Xavier's College, Tirunelveli - 627002, Tamil Nadu ,IN
  • Department of Physics, St. Xavier's College, Tirunelveli - 627002, Tamil Nadu ,IN
  • Department of Physics, St. Xavier's College, Tirunelveli - 627002, Tamil Nadu ,IN
  • Department of Chemistry, TDMNS College, T. Kallikulam, Tirunelveli - 627113, Tamil Nadu ,IN
  • Department of Physics, St. Xavier's College, Tirunelveli - 627002, Tamil Nadu ,IN

DOI:

https://doi.org/10.18311/jsst/2018/17949

Keywords:

Dielectric, Guanidine Acrylate (GuAcr), Impedance analysis, Optical Properties, Slow Evaporation

Abstract

Organic single crystal of Guanidine Acrylate (GuAcr) was grown by simple inexpensive slow evaporation technique. The grown crystal was subjected into various characterizations like single crystal XRD, UV-Vis, FTIR studies, electrical, mechanical properties and SHG technique. The XRD data shows that the crystal belongs to orthorhombic structure. The UV-Vis spectral studies observed that the cutoff wavelength of the grown crystal is 320nm. Optical band gap of the grown crystal was also calculated, and it was found to be 3.99 eV. Vibrational frequencies of GuAcr crystal were confirmed by FTIR spectra. Electrical properties of the GuAcr single crystals were studied using impedance spectroscopy. Decreasing impedance with increasing temperature is indicated that the negative temperature co-efficient of resistance behavior like an insulator. Dielectric response of the crystal with varying frequencies was also studied. Second harmonic generation of the title compound was studied using Kurtz Perry- powder SHG technique. It reveals that as grown crystal is suitable for Nonlinear Optical (NLO) device fabrications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2019-01-03

How to Cite

Sathya, D., Sivashankar, V., Ambrose Rajkumar, M., Murugesan, R., & Prem Anand, D. (2019). Structural, Optical and Dielectric Characterization of Guanidine Acrylate (GuAcr) NLO Single Crystals. Journal of Surface Science and Technology, 34(3-4), 98–103. https://doi.org/10.18311/jsst/2018/17949
Received 2017-09-08
Accepted 2018-02-26
Published 2019-01-03

 

References

P. N. Prasad and D. J. Williams, ‘Intro Nonlinear Opt Effec in Mol. Polymers', Wiley, New York (1990).

D. S. Chemla, J. Zyss, ‘Nonlinear Opt Properties of Organic Mol and Crystals', Academic Press, New York (1987).

G. Smith, D. E. Lynch, K. A. Byriel and C. H. L. Kennard, J. Chem. Crystallogr., 27(5), 307 (1997).

https://doi.org/10.1007/BF02575979 DOI: https://doi.org/10.1007/BF02575979

T. Pal, T. Kar, G. Bocelli, and L. Rigi, Cryst. Growth Des., 3(1), 13 (2003). https://doi.org/10.1021/cg025583y DOI: https://doi.org/10.1021/cg025583y

I. Caracelli, J. Zukerman-Schpector, H. A. Stefani, B. Ali and Edward R. T. Tiekink, Acta Cryst., E71, 0582 (2015).

M. A. Rajkumar, S. S. J. Xavier, S. Anbarasu and D. P. Anand, Opt. Mater., 55, 153 (2016). https://doi.org/10.1016/j.optmat.2016.03.022 DOI: https://doi.org/10.1016/j.optmat.2016.03.022

M. A. Rajkumar, X. S. J. Xavier, S. Anbarasu and D. P. Anand, Optik., 127, 2187 (2016). https://doi.org/10.1016/j.ijleo.2015.10.239 DOI: https://doi.org/10.1016/j.ijleo.2015.10.239

M. A. Rajkumar, X. S. J. Xavier, S. Anbarasu and D. P. Anand, Acta Cryst., E71, 231 (2015). DOI: https://doi.org/10.1107/S2056989015000365

M. A. Rajkumar, X. S. J. Xavier, S. Anbarasu and D. P. Anand, Acta Cryst., E70, 473 (2014). https://doi.org/10.1107/S160053681400525X PMid:24826170 PMCid:PMC3998560 DOI: https://doi.org/10.1107/S160053681400525X

M. Drozd, Mater Sci & Engg B., 136, 20 (2007). https://doi.org/10.1016/j.mseb.2006.08.063 DOI: https://doi.org/10.1016/j.mseb.2006.08.063

M. Drozd, D. Dudzic and A. Pietraszko, Spectrochim. Acta Mol. Spectros., 61, 2775 (2005). https://doi.org/10.1016/j.saa.2004.10.024 PMid:16043078 DOI: https://doi.org/10.1016/j.saa.2004.10.024

M. Drozd, D. Dudzic and A. Pietraszko, Spectrochim. Acta Mol. Spectros., 105, 135 (2013). https://doi.org/10.1016/j.saa.2012.12.013 PMid:23299021 DOI: https://doi.org/10.1016/j.saa.2012.12.013

D. Sathya and V. Sivashankar, Optik., 126, 5873 (2015). https://doi.org/10.1016/j.ijleo.2015.08.240 DOI: https://doi.org/10.1016/j.ijleo.2015.08.240

D. Sathya, V. Sivashankar, S. Anbarasu and D. Premanand, Inter. J. Sci Res Modern Education., 1, 597 (2016).

G. Socrates, ‘Infrared and Raman Characteristic Group Frequencies, Tables and Charts', John Wiley & Sons Ltd, England (2001).

J. Uma and V. Rajendran, Prog. Nat. Sci., 26, 24 (2016). https://doi.org/10.1016/j.pnsc.2016.01.013 DOI: https://doi.org/10.1016/j.pnsc.2016.01.013

K. Sangwal, Mater. Chem. Phys., 63, 145 (2000). https://doi.org/10.1016/S0254-0584(99)00216-3 DOI: https://doi.org/10.1016/S0254-0584(99)00216-3

K. Kanagasabapathy and R. Rajasekaran, Optik., 124, 4240 (2013). https://doi.org/10.1016/j.ijleo.2013.03.002 DOI: https://doi.org/10.1016/j.ijleo.2013.03.002

E. M. Onitsch, Mikrokosmos., 2, 131(1947). DOI: https://doi.org/10.1136/bmj.2.4516.131