Dendrimer Mediated In Situ Preparation of Size-Controlled Platinum-Nickel Alloy Nanoparticles on Carbon Nanotubes as Electrocatalysts for Methanol Oxidation

Jump To References Section

Authors

  • Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei - 10607 ,TW
  • Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei - 10607 ,TW

DOI:

https://doi.org/10.18311/jsst/2015/1702

Keywords:

Carbon Nanotube, Dendrimer, Electrocatalyst, Methanol Oxidation, Platinum-Nickel Alloy
Electrochemistry

Abstract

PtxNiy alloy nanoparticles with different compositions were prepared on Carbon Nanotube (CNT) surfaces in the presence of amine-terminated poly(amido amine) dendrimer as a scaffold. PtxNiy alloys with an average diameter of 2–3 nm were uniformly deposited on dendrimer bound on CNT. The formation of the PtxNiy alloys and the presence of Pt(0), Ni(0), Ni(OH)2 and NiOOH were revealed from X-ray diffraction and X-ray photoelectron spectroscopic results. The total metal content in the PtxNiy alloys increased with increasing the supplied Ni precursor, and the addition of Ni to Pt could lead the alloy formation with high thermal stability. It should be noted that the bimetallic nanoparticles with Ni up to 20 wt% showed efficient catalytic activity for methanol oxidation in proportion to Pt catalyst. This study demonstrates the promising alternative for the high demand of Pt in the cathode catalysts of direct methanol fuel cells.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2015-06-18

How to Cite

Prasannan, A., & Imae, T. (2015). Dendrimer Mediated In Situ Preparation of Size-Controlled Platinum-Nickel Alloy Nanoparticles on Carbon Nanotubes as Electrocatalysts for Methanol Oxidation. Journal of Surface Science and Technology, 31(1-2), 51–57. https://doi.org/10.18311/jsst/2015/1702

Issue

Section

Articles

 

References

V. DiNoto and E. Negro, Fuel Cells, 10, 234 (2010).

X. Zhao, M. Yin, L. Ma, L. Liang, C. Liu, J. Liao, T. Lu and W. Xing, Energy Environ. Sci., 4, 2736 (2011).

S. J. Yoo, T. Y. Jeon, K. S. Kim, T. H. Lim and Y. E. Sung, Phys. Chem. Chem. Phys., 12, 15240 (2010).

C. H. Yen, K. Shimizu, Y. Y. Lin, F. Bailey, I. F. Cheng and C.M. Wai, Energy & Fuels, 21, 4 (2007).

C. T. Hsieh and J. Y. Lin, J. Power Sources, 188, 347 (2009).

C. Wang, D. van der Vliet, K. C. Chang, H. You, D. Strmcnik, J. A. Schlueter, N. M. Markovic and V. R. Stamenkovic, J. Phys. Chem. C, 113, 19365 (2009).

M. Winter and R. J. Brodd, Chem. Rev., 104, 4245 (2004).

J. Guerra and M. A. Herrero, Nanoscale, 2, 1390 (2010).

H. Jiang, Small, 7, 2413 (2011).

M. F. L. De Volder, S. H. Tawfick, R. H. Baughman and A. J.Hart, Science, 339, 535 (2013).

X. Lu and T. Imae, J. Phys. Chem. C, 111, 2416 (2007).

X. Lu and T. Imae, J. Phys. Chem. C, 111, 8459 (2007).

A. Siriviriyanuna and T. Imae, Phys. Chem. Chem. Phys.,14, 10622 (2012).

A. Manna, T. Imae, K. Aoi, M. Okada and T. Yogo, Chem. Mater., 13, 1674 (2001).

L. M. Bronstein and Z. B. Shifrina, Chem. Rev. 111, 5301(2011).

Y. Zhu, H. Zhu, X. Yang, L. Xu and C. Li, Electroanalysis,19, 698 (2007).

J. Zhang, Y. Zhu, C. Chen, X. Yang and C. Li, Particuology,10, 450 (2012).

T. Maiyalagan, J. Solid State Electrochem., 13, 1561 (2009).

J. T. Sun, C. Y. Hong and C.-Y. Pan, Polym. Chem., 2, 998(2011).

A. Siriviriyanun and T. Imae, Phys. Chem. Chem. Phys.,15, 4921(2013).

A. Siriviriyanun, T. Imae and N. Nagatani, Anal. Biochem.,443, 169 (2013).

M. A. Herrero, J. Guerra, V. S. Myers, M. V. Gomez, R. M.Crooks and M. Prato, ACS Nano 4, 905 (2010).

Z. C. Wanga, Z. M. Mab and H. L. Li, Applied Surface Sci.254, 6521 (2008).

T. Y. Jeon, S. J. Yoo, Y. H. Cho, K. S. Lee, S. H. Kang and Y. E. Sung, J. Phys. Chem. C, 113, 19732 (2009).

K. W. Park, J. H. Choi, and Y. E. Sung, J. Phys. Chem. B, 107,2003 (2003).

Y. X. Chen, A. Miki, S. Ye, H. Sakai, and M. Osawa, J. Am.Chem. Soc., 125, 3680 (2003).