Anodic Behaviour of Ti-12 in Various Electrolytes


Affiliations

  • University College of Engineering, Osmania University, Department of Chemistry, Hyderabad, Telangana, 500007, India

Abstract

Anodization of Ti-12 alloy has been carried out in various electrolytes at different constant current densities and temperatures. Kinetics of anodic films was studied in different electrolytes at different constant current densities ranging from 4mAcm-2 to 64mAcm-2 and at different temperatures ranging from 298 to 338K. From the plots of formation voltage (V) vs time (t), rates of formation were calculated. The rate of film formation and breakdown voltage increase with increase in constant current density while decrease with increase in temperature. The kinetics were found better in sulphamic acid electrolyte at room temperature compared to other electrolytes at the same anodizing conditions.

Keywords

Anodization, Constant Current Density, Formation Rate, Titanium-12

Full Text:

References

D. M. Brunette, P. Tengavall, M. Textor and P. Thomsen, Springer, 171 (2001).

H. Luckey, and F. Kubli, ASTM, 796 (1981).

G. R. Parr, L. K. Gardner, and R. W. Toth, J. Posthent. Dent., 54, 410 (1985). https://doi.org/10.1016/00223913(85)90562-1

J. E. G. Gonzalez and J. C. Minza-Rosca, J. Electroanal. Chem., 471, 109 (1999). https://doi.org/10.1016/S00220728(99)00260-0

K. S. Brammer, C. J. Frandsen and S. Jin, Trends Biotechnol., 30, 315 (2012). https://doi.org/10.1016/j.tibtech.2012.02.005 PMid:22424819

S. L. De-Assis, S. W. Solynec and I. Costa, Electrochim. Acta., 51, 1815 (2006). https://doi.org/10.1016/j.electacta.2005.02.121

F. H. Jones, Surf. Sci. Rep., 42, 75 (2001). https://doi.org/10.1016/S0167-5729(00)00011-X

R. Narayanan, H. J. Lee, J. Y. Kwon and K. H. Kim, Mater. Chem. Phys., 125, 510 (2001). https://doi.org/10.1016/j.matchemphys.2010.10.024

G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar, and C. A. Grimes, Sol. Energ. Mater. Sol. Cell., 90, 2011 (2006). https://doi.org/10.1016/j.solmat.2006.04.007

Z. M. Yan, T. W. Guo, H. B. Pan and J. J. Yu, Mater. Trans., 43, 3142 (2002). https://doi.org/10.2320/matertrans.43.3142

M. V. Diamanti, B. Del Curto, C. Passaro and M. P. Pedeferri, Color. Res. Appl., 37, 384 (2012). https://doi.org/10.1002/ col.20683

M. Kisaichi, Surf. Technol., 40, 66 (1989).

B. B. Secley, Metal. Progress, 9, 35 (1982).

R. S. Hyam, and D. Choi, RSC ADV., 3, 7057 (2013). https:// doi.org/10.1039/c3ra40581h

V. Jeevana Jyothi, and Ch. Anjaneyulu, E J. Chem., 6, 880 (2009). https://doi.org/10.1155/2009/579860

Ch. Anjaneyulu, Thesis, Osmania University, 1981.

G. Raghunathreddy, A. Lavanya and Ch. Anjaneyulu, Bull. Electrochem., 22, 235 (2006).

P. Baskar Reddy and A. Panasa Reddy, Bull. Electrochem., 19, 481 (2003).

T. Aerts, Th. Dimogerontakis, I. D. Graeve, J. Fransaer and H.Terryn, Surf. Coating. Tech., 201, 7310 (2007). https://doi.org/10.1016/j.surfcoat.2007.01.044

P. Michal, A. Vagaska, E. Fechova, M. Gombar and D. Kozak, METABK, 55, 403 (2016).


Refbacks

  • There are currently no refbacks.