Electronic and Transmission Properties of Low Buckled GaAs Armchair Nanoribbons


Affiliations

  • GLA University, Department of Electronics and Communication Engineering, Mathura, Uttar Pradesh, 281406, India

Abstract

The electronic and transmission properties of N atom width (N: 4, 8, 12, 16)low-buckled (LB) armchair GaAs hydrogen (H) passivated nanoribbons (NA GaAs NRs) are studied with the help of first-principle theory. In low buckled armchair GaAs nanoribbon, quantum confinement effect is observed due to which all of the investigated NA GaAs NRs with H passivated are found to be semiconducting. The fundamental direct band gap at k-point Г (gamma) have been calculated, which exhibit interesting width dependent (N: 4~16) behaviour of bandgap. The H passivated edge of NA GaAs NRs with different width of nanoribbons provides great flexibility to modulate fundamental bandgap. The transmission coefficient is calculated from which thermal conductance has been calculated forall width of GaAs armchair nanoribbon.

Keywords

Armchair, Bandgap, Conductance, DFT, MGGA, Nanoribbon (NR), Transmission Coefficient.

Subject Discipline

Nanotechnology

Full Text:

References

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, Adv. Mater., 22, 3906 (2010). Crossref PMid:20706983

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, F. Wang, Nano Lett., 10, 1271 (2010). Crossref PMid:20229981

F. Bonaccorso, Z. Sun, T. Hasan, A. C. Ferrari, Nat. Photonics, 4, 611 (2010). Crossref

N. D. Gupta, J. Vijay, IEEE J. Quant. Electron., 53, 1 (2017). Crossref

N. D. Gupta, V. Janyani, G. Singh, H. Tsuda, Proc. Front. Opt. 2015, (2015).

N. D. Gupta, V. Janyani, J. Nanoelectron. Optoelectron., 11, 368 (2016). Crossref

J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Mullen, R. Fasel, Nature, 466,470 (2010). Crossref PMid:20651687

T. Ohta, Science, 313, 951 (2006). Crossref PMid:16917057

J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, L. M. K. Vandersypen, Nat. Mater. 7, 151 (2008). Crossref PMid:18059274

X. Dong, Y. Shi, Y. Zhao, D. Chen, J. Ye, Y. Yao, F. Gao, Z. Ni, T. Yu, Z. Shen, Y. Huang, P. Chen, L. J. Li, Phys. Rev. Lett., 102 (2009).

K. Novoselov, V. Fal, L. Colombo, Nature, 490, 192 (2012). Crossref PMid:23060189

D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, K. S. Novoselov, Science, 323, 610 (2009). Crossref PMid:19179524

K. Kim, J.-Y. Choi, T. Kim, S.-H. Cho, H.-J. Chung, Nature, 479, 338 (2011). Crossref PMid:22094694

F. Wang, Z. Wang, Q. Wang, F. Wang, L. Yin, K. Xu, Y. Huang, J. He, Nanotechnology, 26, 292001 (2015). Crossref PMid:26134271

S. Das, H. Y. Chen, A. V. Penumatcha, J. Appenzeller, Nano Lett.,13,100 (2013). Crossref PMid:23240655

W. Zhang, C.-P. Chuu, J.-K. Huang, C.-H. Chen, M.-L. Tsai, Y.-H. Chang, C.-T. Liang, Y.-Z. Chen, Y.-L. Chueh, J.-H. He, M.-Y. Chou, L.-J. Li, Sci. Rep., 4, 3826 (2014). Crossref PMid:24451916 PMCid:PMC3899643

M. Bernardi, M. Palummo, J. C. Grossman, Nano Lett., 13, 3664 (2013). Crossref PMid:23750910

T. Roy, M. Tosun, J. S. Kang, A. B. Sachid, S. B. Desai, M. Hettick, C. C. Hu, A. Javey, ACS Nano, 8, 6259 (2014). Crossref PMid:24779528

B. Radisavljevic, A. Kis, Nat. Mater., 12, 815 (2013). Crossref PMid:23793161

Y. Wang, Y. Chen, H. Li, X. Li, H. Chen, H. Su, Y. Lin, Y. Xu, G. Song, X. Feng, ACS Nano,10 (9), 8199 (2016). PMid:27471774

C. Sealy, Nano Today, 11, 539 (2016). Crossref 22. H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. T. Senger, S. Ciraci, Phys Rev B Condens Matter., 80 (2009).

Y.-W. Son, M. L. Cohen, S. G. Louie, Phys. Rev. Lett., 97, 216803 (2006). Crossref PMid:17155765

B. Mahler, V. Hoepfner, K. Liao, G. A. Ozin, J. Am. Chem. Soc., 136, 14121 (2014). Crossref PMid:25220034

A. A. Balmashnov, K. S. Golovanivsky, E. M. Omeljanovsky, A. V. Pakhomov, A. Y. Polyakov, Semicond. Sci. Technol., 5, 242 (1990). Crossref

P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, R. M. Wentzcovitch, J. Phys. Condens. Matter, 21, 395502 (2009). Crossref PMid:21832390

J. Perdew, K. Burke, Y. Wang, Phys. Rev. B, 54, 16533 (1996). Crossref

K. Laasonen, R. Car, C. Lee, D. Vanderbilt, Phys. Rev. B, 43,6796 (1991). Crossref

H. J. Monkhorst, J. D. Pack, Phys. Rev. B, 13, 5188 (1976). Crossref

Atomistic ToolKit version 2016.3, Quantum Wise A/S.

F. Tran, P. Blaha, Phys. Rev. Lett., 102, 226401 (2009). Crossref PMid:19658882

C. Hartwigsen, S. Goedecker, J. Hutter, Phys. Rev. B, 58,3641 (1998). Crossref

W. G. Schmidt, F. Bechstedt, Phys. Rev. B, 54, 16742 (1996). https://doi.org/10.1103/PhysRevB.54.16742

S. Cahangiro, S. Ciraci, Cond-Mat.Mtrl-Sci, 1–9 (2010).

S. Adachi, Handbook on Physical Properties of Semiconductors, John Wiley &Sons, Chichester, 2005, p.133.

A. Gali, Phys. Rev. B Condens. Matter., 73, 33204 (2006).

Z. Li, D. S. Kosov, J. Phys. Chem. B, 110, 9893 (2006). Crossref PMid:16706444

Y. T. Yang, R. X. Ding, J. X. Song, Phys. B Condens. Matter, 406, 216 (2011). Crossref

H. H. B. Sorensen, P. C. Hansen, D. E. Petersen, S. Skelboe, K. Stokbro, Phys. Rev. B, 79, 205322 (2009). Crossref


Refbacks

  • There are currently no refbacks.