Characterization of Ag Doped SnO2 for Gas Sensing Application


Affiliations

  • Labmat ENPO Oran Mnaouer, 31000, Algeria
  • Université Djilali Bounaama Khemis Miliana, W. Ain Defla, 44000, Algeria
  • Université de Namur Rue de Bruxelles, Namur, 61B-5000, Belgium

Abstract

We used Transmission Electron Microscopy TEM, Energy Dispersive X-ray (EDX), X-ray Diffraction (XRD) and impedance spectroscopy to study SnO2 doped by sputtered Ag atoms on its surface. The morphology of the surface texture showed large Ag islands in SnO2 bulk when the system was submitted to heating. These results were well confirmed by EDX spectrum, TEM scanning micrograph and impedance spectroscopy. Furthermore, TRIM software was used to show the effects of nuclear and electron stopping range on optical properties of the crystal Ag-SnO2 and the depth reached by Ag into SnO2 bulk.

Keywords

Ag-SnO2, Doping, EDX, TEM, TRIM, XRD.

Full Text:

References

A. Pandey, P. Verma and O. P. Pandey, Ind. J. Eng. & Mat. Sc., 15, 236 (2008).

C. K. Wang, J. J. Ho, S. J. Nien, Y. T. Cheng, W. Lee, C. C. Lu, B. S. Yau, H. W. Tsai and C. Cheng. J. Marine Sc. and Tech., 18, 825 (2010).

A. Forleo, L. Francesco, S. Capone, F. Casino, P. Siciliano, O. K. Tan and H. Hui, Sensor Actuator B Chem., 154, 280 (2011).

H. Huang, C. K. Lim, M. Siu, J. Guo and O. K. Tan, J. Nanoscale, 4, 1491 (2012).

A. Chowdhu, D. Haridas, K. Sreenivas and V. Gupta, Int. J. Smart Sensing and Int. Systems, 2, 540 (2009).

H. Y. Yang, S. F. Yu, H. K. Liang, T. P. Chen, J. Gao, and T. Wu, Optic. Express, 18, 1585 (2010).

C. D. Zorzi, G. Rossetto, D. Calestani, M. Z. Zha, A. Zappettini, L. Lazzarini, M. Villani, N. El Habra, L. Zanotti, Cryst. Res. Tech., 46, 847 (2011).

M. Haungs, ‘Brief Table of X-Ray line Energies and Widths’, (1986).

S. Aydin, G. Turgut, M. Yilmaz, D. Tatar, B. Düzgün and M. Ertuğrul, Int. J. of the Phys. Sci., 7, 5327 (2012).

I. Madhi, M. Saadoun and B. Bessais, Procedia Engineering, 47, 192 (2012).

R. S. Zeferino, U. Pal, R. Meléndrez and M. B. Flores, Advances in Nano Research, 1(4), 193 (2013).

V. Raj, K. Palanisamy and M. Arthanareeswari, Chem. Sci. Rev. Letters, 25, 293 (2013).

A. Yamaguchi, Technical Review, 70, 17 (2010).

G. F. Iriarte, ‘Microscopy: Science, Technology, Applications and Education’ (Eds.) A. Mendez-vilas and J. Diaz, 1888 (2010).

L. L. Dıaz-Flores, R. Ramırez-Bon, A. Mendoza-Galvan, E. Prokhorov and J. Gonzalez-Hernandez, J. Phys. Chem. Solid, 64, 1037 (2003).

M. Grossi and B. Riccò, J. Sens. Sens. Syst., 6, 303 (2017).

R. Savu, M. A. Ponce, E. Joanni, P. Roberto Bueno, M. Castro, M. Cilense, J. Arana Varela, E. Longo, Materials Res. 12 (2009).

H. Cesiulis, N. Tsyntsaru, A. Ramanavicius and G. Ragoisha, ‘The study of thin film by electrochemical impedance sepectroscopy’, Springer, 978 (2016).

S. Amandeep, ‘Parametric study of gas sensing response of ZnO nanostructures and carbon nanotubes’ Thesis, Rochester Institute of Technology, 96, (2009).

N. Demirci Sankir, E. Aydın, M. Sankir. Int. J. Electrochem. Sci., 9, 3864 (2014).

J. E. Bauerle, J. Phys. and Chem. of Solids, 30(12), 2657 (1969).

O. Rahim, A. Ben Chenna, T. Zaiz, K. Chaouch and T. Lanez, Rev. Sci. Fond. App., 3(2), 85 (2011).

E. Barsoukov and J. Ross Macdonald, ‘Impedance Spectroscopy Theory, Experiment, and Applications’, Wiley Intersciences, 22 Edit. (2005).

A. Vasile, C. Hornoiu, C. Munteanu, I. Niculae, T. Yuzhakova and Á. Redey, Rev. Roum. Chim. 61, 503 (2016).

I. Ebersberger and G. Fischerauer, Sens. Sens. Syst. 4, 85 (2015).

K. M. Abhirami, P. Matheswaran, B. Gokul, R. Sathyamoorthy and K. Asokan, IOP Conf. Series: Materials Science and Engineering, 73, 01211 (2015).


Refbacks

  • There are currently no refbacks.