The Electro-Spun Sublingual Film Containing Curcumin Micelles

Jump To References Section

Authors

  • Department of Pharmaceutics and Pharmaceutical Technology, Parul Institute of Pharmacy, Parul University, Vadodara - 391760, Gujarat. ,IN
  • Department of Pharmaceutics and Pharmaceutical Technology, Parul Institute of Pharmacy, Parul University, Vadodara - 391760, Gujarat. ,IN
  • Department of Pharmaceutics and Pharmaceutical Technology, Parul Institute of Pharmacy, Parul University, Vadodara - 391760, Gujarat. ,IN
  • Department of Pharmaceutics and Pharmaceutical Technology, Parul Institute of Pharmacy, Parul University, Vadodara - 391760, Gujarat. ,IN
  • Department of Pharmaceutics and Pharmaceutical Technology, Parul Institute of Pharmacy, Parul University, Vadodara - 391760, Gujarat. ,IN

DOI:

https://doi.org/10.18311/jnr/2023/31842

Keywords:

Electro Spinning, Micelles, Poloxamer-188, Sublingual Film, TPGS.

Abstract

Hydrophilic polymers D-tocopheryl polyethylene glycol succinate (TPGS-1000) and Poloxamer-188 were combined for the formulation of a sublingual film that aids in improving the oral bioavailability of the drug curcumin, which is not very soluble. For the formulation of micelles, the thin-film hydration technique was used and then electro-spun into a sublingual film that contained 13 % w/v PVP. Following that, prepared micelles and films were assessed and evaluated (particle size, PDI, zeta potential, %EE, pH studies, disintegration time, and in vitro drug release). According to the findings, the average particle size of the blended micelles was 230.2 nm. The ideal formulation of mixed micelles had a mean zeta potential and PDI of 20.73 mV and 0.258±0.038, respectively. Additionally, an entrapment efficiency of 82% was reached. In an aqueous medium, the film disintegrated in 40±10 seconds. Micelles were incorporated into the film without losing their integrity. Importantly, as compared to a pure drug, the films with micelles put on them showed improved bioavailability, high permeability and rapid absorption of the curcumin. Compared to the pure drug, the bioavailability of the films was increased by around 2.18 times due to the presence of mixed micelles loaded with curcumin. The results also showed that micelles-loaded sublingual films performed well in vitro for bioavailability improvement. In the end, it was found that films containing a mixture of poloxamer-188 and TPGS-1000 micelles would function effectively as carriers to boost curcumin’s bioavailability.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-03-23

How to Cite

Prajapati, B., Rede, P., Patel, C., Pujari, R., & Dharamsi, A. (2023). The Electro-Spun Sublingual Film Containing Curcumin Micelles. Journal of Natural Remedies, 23(1), 205–211. https://doi.org/10.18311/jnr/2023/31842

Issue

Section

Research Articles
Received 2022-11-01
Accepted 2023-03-23
Published 2023-03-23

 

References

Srimal RC. Turmeric: A brief review of medicinal properties. Fitoterapia (Milano). 1997; 68(6):483-9.

Maheshwari RK, Singh AK, Gaddipati J, Srimal RC. Multiple biological activities of curcumin: A short review. Life Sciences. 2006; 78(18):2081-7. https://doi.org/10.1016/j. lfs.2005.12.007 DOI: https://doi.org/10.1016/j.lfs.2005.12.007

Duvoix A, Blasius R, Delhalle S, Schnekenburger M, Morceau F, Henry E, Dicato M, Diederich M. Chemopreventive and therapeutic effects of curcumin. Cancer Letters. 2005; 223(2):181-90. https://doi.org/10.1016/j.canlet.2004.09.041 DOI: https://doi.org/10.1016/j.canlet.2004.09.041

Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Research. 2003; 23(1/A):363-98.

Wang Z, Zhang Y, Banerjee S, Li Y, Sarkar FH. Retracted: Notch–1 down–regulation by curcumin is associated with the inhibition of cell growth and the induction of apoptosis in pancreatic cancer cells. Cancer. 2006; 106(11):2503-13. https://doi.org/10.1002/cncr.21904 DOI: https://doi.org/10.1002/cncr.21904

Lev-Ari S, Strier L, Kazanov D, Madar-Shapiro L, Dvory Sobol H, Pinchuk I, Marian B, Lichtenberg D, Arber N. Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells. Clinical Cancer Research. 2005; 11(18):6738-44. https://doi.org/10.1158/1078-0432.CCR05-0171 DOI: https://doi.org/10.1158/1078-0432.CCR-05-0171

Cruz–Correa M, Shoskes DA, Sanchez P, Zhao R, Hylind LM, Wexner SD, Giardiello FM. Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clinical Gastroenterology and Hepatology. 2006; 4(8):1035-8. https://doi.org/10.1016/j. cgh.2006.03.020 DOI: https://doi.org/10.1016/j.cgh.2006.03.020

Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, Lin JK. Stability of curcumin in buffer solutions and characterization of its degradation products. Journal of Pharmaceutical and Biomedical Analysis. 1997; 15(12):1867-76. https://doi. org/10.1016/S0731-7085(96)02024-9 DOI: https://doi.org/10.1016/S0731-7085(96)02024-9

Cheng AL, Hsu CH, Lin JK, Hsu MM, et al. “Phase I chemoprevention clinical trial of curcumin, a chemo preventive agent, in patients with high risk or pre-malignant lesions”. Anticancer Research. 2001; 21(4):2895-2900.

Kazunori Kataoka, Atsushi Harada, Yukio Nagasaki. “Block copolymer micelles for drug delivery: design, characterization and biological significance”. Advanced Drug Delivery Reviews. 2012; 64:37-48. https://doi.org/10.1016/j. addr.2012.09.013 DOI: https://doi.org/10.1016/j.addr.2012.09.013

Bromberg L. Polymeric micelles in oral chemotherapy. Journal of Controlled Release. 2008; 128(2):99-112. https:// doi.org/10.1016/j.jconrel.2008.01.018 DOI: https://doi.org/10.1016/j.jconrel.2008.01.018

Attia AB, Ong ZY, Hedrick JL, Lee PP, Ee PL, Hammond PT, Yang YY. Mixed micelles self-assembled from block copolymers for drug delivery. Current Opinion in Colloid and Interface Science. 2011; 16(3):182-94. https://doi. org/10.1016/j.cocis.2010.10.003 DOI: https://doi.org/10.1016/j.cocis.2010.10.003

Ma X, Williams RO. Polymeric nanomedicines for poorly soluble drugs in oral delivery systems: An update. Journal of Pharmaceutical Investigation. 2018; 48(1):61-75.

Lv QY, Li XY, Shen BD, Dai L, Xu H, Shen CY, Yuan HL, Han J. A solid phospholipid-bile salts-mixed micelles based on the fast-dissolving oral films to improve the oral bioavailability of poorly water-soluble drugs. Journal of Nanoparticle Research. 2014; 16(6):1-4. https://doi. org/10.1007/s11051-014-2455-6 DOI: https://doi.org/10.1007/s11051-014-2455-6

Guo YG, Singh AP. Emerging strategies for enhancing buccal and sublingual administration of nutraceuticals and pharmaceuticals. Journal of Drug Delivery Science and Technology. 2019; 52:440-51. https://doi.org/10.1016/j. jddst.2019.05.014 DOI: https://doi.org/10.1016/j.jddst.2019.05.014

Hua S. Advances in nanoparticulate drug delivery approaches for sublingual and buccal administration. Frontiers in Pharmacology. 2019; 10:1328. https://doi. org/10.3389/fphar.2019.01328 DOI: https://doi.org/10.3389/fphar.2019.01328

Kaldybekov DB, Tonglairoum P, Opanasopit P, Khutoryanskiy VV. Mucoadhesive maleimide-functionalised liposomes for drug delivery to urinary bladder. European Journal of Pharmaceutical Sciences. 2018; 111:83- 90. https://doi.org/10.1016/j.ejps.2017.09.039 DOI: https://doi.org/10.1016/j.ejps.2017.09.039

Ahn H, Park JH. Liposomal delivery systems for intestinal lymphatic drug transport. Biomaterials Research. 2016; 20(1):1-6. https://doi.org/10.1186/s40824-016-0083-1 DOI: https://doi.org/10.1186/s40824-016-0083-1

Chunhachaichana C, Srichana T. Efficiency of sildenafil encapsulation in poloxamer micelles. Journal of Dispersion Science and Technology. 2019; 40(10):1461-8. https://doi. org/10.1080/01932691.2018.1518142 DOI: https://doi.org/10.1080/01932691.2018.1518142

Wang T, Markham A, Thomas SJ, Wang N, Huang L, Clemens M, Rajagopalan N. Solution stability of poloxamer 188 under stress conditions. Journal of pharmaceutical sciences. 2019; 108(3):1264-71. https://doi.org/10.1016/j. xphs.2018.10.057 DOI: https://doi.org/10.1016/j.xphs.2018.10.057

Tambe A, Pandita N. Enhanced solubility and drug release profile of boswellic acid using a poloxamer-based solid dispersion technique. Journal of Drug Delivery Science and Technology. 2018; 44:172-80. https://doi.org/10.1016/j. jddst.2017.11.025 DOI: https://doi.org/10.1016/j.jddst.2017.11.025

Joseph G. Moloughney, Noah Weisleder. Poloxamer 188 (p188) as a membrane resealing reagent in biomedical applications. Recent Patents on Biotechnology. 2012; 6(3):200-11. https://doi.org/10.2174/1872208311206030200 DOI: https://doi.org/10.2174/1872208311206030200

Singh-Joy SD, McLain VC. Safety assessment of poloxamers 101, 105, 108, 122, 123, 124, 181, 182, 183, 184, 185, 188, 212, 215, 217, 231, 234, 235, 237, 238, 282, 284, 288, 331, 333, 334, 335, 338, 401, 402, 403, and 407, poloxamer 105 benzoate, and poloxamer 182 dibenzoate as used in cosmetics. International Journal of Toxicology. 2008; 27:93-128. https://doi.org/10.1080/10915810802244595 DOI: https://doi.org/10.1080/10915810802244595

Hu XY, Lou H, Hageman MJ. Preparation of lapatinib ditosylate solid dispersions using solvent rotary evaporation and hot melt extrusion for solubility and dissolution enhancement. International Journal of Pharmaceutics. 2018; 552(1-2):154-63. https://doi.org/10.1016/j. ijpharm.2018.09.062 DOI: https://doi.org/10.1016/j.ijpharm.2018.09.062

Kim DS, Kim DW, Kim KS, Choi JS, Seo YG, Youn YS, Oh KT, Yong CS, Kim JO, Jin SG, Choi HG. Development of a novel l-sulpiride-loaded quaternary microcapsule: Effect of TPGS as an absorption enhancer on physicochemical characterization and oral bioavailability. Colloids and Surfaces B: Biointerfaces. 2016; 147:250-7. https://doi.org/10.1016/j. colsurfb.2016.08.010 DOI: https://doi.org/10.1016/j.colsurfb.2016.08.010

Singh H, Narang JK, Singla YP, Narang RS, Mishra V. TPGS stabilized sublingual films of frovatriptan for the management of menstrual migraine: Formulation, design and antioxidant activity. Journal of Drug Delivery Science and Technology. 2017; 41:144-56. https://doi.org/10.1016/j. jddst.2017.07.008 DOI: https://doi.org/10.1016/j.jddst.2017.07.008

Keshari P, Sonar Y, Mahajan H. Curcumin loaded TPGS micelles for nose to brain drug delivery: in vitro and in vivo studies. Materials Technology. 2019; 34(7):423-32. https:// doi.org/10.1080/10667857.2019.1575535 DOI: https://doi.org/10.1080/10667857.2019.1575535

Jain S, Pandey S, Sola P, Pathan H, Patil R, Ray D, Aswal VK, Bahadur P, Tiwari S. Solubilization of carbamazepine in TPGS micelles: Effect of temperature and electrolyte addition. Aaps Pharm SciTech. 2019; 20(5):1-8. https://doi. org/10.1208/s12249-019-1412-1 DOI: https://doi.org/10.1208/s12249-019-1412-1

Suksiriworapong J, Rungvimolsin T, Junyaprasert VB, Chantasart D. Development and characterization of lyophi lized diazepam-loaded polymeric micelles. Aaps Pharm SciTech. 2014; 15(1):52-64. https://doi.org/10.1208/s12249- 013-0032-4 DOI: https://doi.org/10.1208/s12249-013-0032-4

Dai WG, Dong LC, Li S, Deng Z. Combination of Pluronic/ Vitamin E TPGS as a potential inhibitor of drug precipitation. International Journal of Pharmaceutics. 2008; 355(1-2):31- 7. https://doi.org/10.1016/j.ijpharm.2007.12.015 DOI: https://doi.org/10.1016/j.ijpharm.2007.12.015

Nasirizadeh S, Malaekeh-Nikouei B. Solid lipid nanoparticles and nanostructured lipid carriers in oral cancer drug delivery. Journal of Drug Delivery Science and Technology. 2020; 55:101458. https://doi.org/10.1016/j. jddst.2019.101458 DOI: https://doi.org/10.1016/j.jddst.2019.101458

Carn SA, Fioletov VE, McLinden CA, Li C, Krotkov NA. A decade of global volcanic SO2 emissions measured from space. Scientific Reports. 2017; 7(1):1-2. https://doi. org/10.1038/srep44095 DOI: https://doi.org/10.1038/srep44095

Lim SJ, Kim CK. Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid. International Journal of Pharmaceutics. 2002; 243(1-2):135-46. https://doi. org/10.1016/S0378-5173(02)00269-7 DOI: https://doi.org/10.1016/S0378-5173(02)00269-7

Shen CY, Yuan XD, Bai JX, Lv QY, Xu H, Dai L, Yu C, Han J, Yuan HL. Development and characterization of an orodispersible film containing drug nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics. 2013; 85(3):1348-56. https://doi.org/10.1016/j.ejpb.2013.09.019 DOI: https://doi.org/10.1016/j.ejpb.2013.09.019

Panda DS, Alruwaili NK, Pattnaik S, Swain K. Ibuprofen loaded electrospun polymeric nanofibers: A strategy to improve oral absorption. Acta Chimica Slovenica. 2022; 69(2):483-8. https://doi.org/10.17344/acsi.2022.737 DOI: https://doi.org/10.17344/acsi.2022.7370

Sumitha CH, Varma MV, Sriniwas K. Development of taste masked fast dissolving orally consumable films of seldinafil citrate. IJPIS J Pharm Cosmet 2011; 1:1-6.

Navamanisubramanian R, Nerella R, Chamundeeswari D,Shanmuganathan S. Use of okra mucilage and chitosan acetate in verapamil hydrochloride buccal patches development; in vitro and ex vivo characterization. J Young Pharm 2017; 9:94-9. DOI: https://doi.org/10.5530/jyp.2017.9.18