

Print ISSN : 0022-2755 Journal of Mines, Metals and Fuels

Contents available at: www.informaticsjournals.com/index.php/jmmf

Conceptual Study of Tube Launched Unmanned Aerial Vehicle (UAV)

Raji George^{1,3}, K Vinita Babu^{1,3}, Adhish Palyam Venkatesh^{1,3}, T Ananda Mukesh^{1,3} Rakesh Kumar² and Prem Ranjan²

¹Department of Mechanical Engineering, M.S. Ramaiah Institute of Technology, Bangalore 560054, Karnataka, India ²Aeronautical Development Establishment (ADE), DRDO, Bangalore 560075, Karnataka. India ³Affiliated to Visvesvaraya Technological University, Belgaum 590018, Karnataka, India

Abstract

Unmanned Aerial Vehicle Technology is used in the field of the military as well as in the commercial domain. Current paper deals with Tube Launched UAV, wherein the complete UAV must fit inside a cylindrical tube and launch from the tube in a very short time. Mainly mechanical design and analysis are carried out towards wing folding for fitting the folded UAV inside a tube of 6 inch diameter. In addition, Propulsion system sizing, catapult launch system design including comparative study of different ramp angles for launching the tube with encapsulated UAV is also highlighted. The main objective behind using Tube Launched Unmanned Aerial Vehicles is that they can be transported in compact spaces like tubes that can be carried in ships, helicopters, planes, and larger drones.

Keyword: Drone, UAV, Design, Propulsion and ESC.

1.0 Introduction

UAVs need to be transported and deployed at the necessary location and larger UAVs require runway to take off. In the modern era we need technologies which are efficient and consume less time for deployment. With the advancing technologies, UAVs have the capability of morphing shape that is useful for better flight performance. And one of the morphing vehicles is Tube Launched UAV (TLUAV)¹ which contains foldable wings and launched from tubular launcher. TLUAV with wings reduces the problem of space and it can be easily packaged and transported. TLUAV is best suitable for mission profiles where launching the UAVs by conventional means is difficult. The launching system of TLUAV can easily be carried by an aircrafts, larger drones, helicopters and or ships.

Applications of Tube Launched UAVs:

- · Monitoring, Exploring and Military Missions.
- Search and Rescue (SAR) operations.
- · Aerial mapping, aerial surveillance, atmospheric sensing.
- The exploration of the ocean resources.

For the current UAV an existing designed UAV configuration has been studied towards the requirement for Tube Integrated concepts concerning mainly the wing folding and unfolding apart from suitable sizing of the propulsion system with foldable propellers². The conceptual study towards configuration has already been done and only mechanical studies towards tube integration and launching is explored in the current paper.

2.0 Propulsion Sizing

The process of designing a UAV is challenging and involves many complex steps to choose the correct components to achieve the desired properties, one of them being the

^{*}Author for correspondence

propulsion system, for example, it is desired to have longrange or efficient performance irrespective of the external condition, etc. Different types of flights require different power requirements, similarly, mission profiles, and the altitude at which the UAV is flying must also be and hence becomes an appropriate substitute for IC engines. Important parameters of an electric motor considered while designing a propulsion system. The driving motor's main objective is to perform at the required efficiency level, provide good endurance, be reliable, and support and perform to the sudden changes in throttle responses.

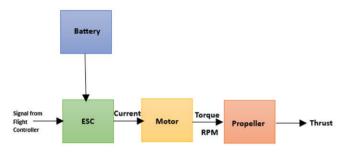


Figure 1: Components of electric propulsion system

There are various types of propulsion systems for a UAV: 1. IC Engines

- a. Nitro powered
 - i. Methanol
 - ii. Ethanol
 - iii. Castor oil
- b. Petrol
- c. Diesel
- 2. Electric
 - i. In Runner

In Runner motor spins only its shaft and the outer shell remains stationary.

ii. Out Runner

The Out-Runner type motor spins its outer shell around its windings and these are extensively used in RC automotive and aircraft.

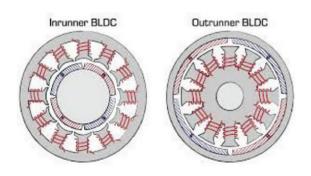


Figure 2: Electric propulsion classification

With the ease of maintenance and fewer vibrations leading to a simple design, the electric propulsion system is considered. Also, it is easily available, cost- effective, and hence becomes an appropriate substitute for IC engines.

Important parameters of an electric motor

- Stator diameter and height
- Number of poles
- Max power
- Operating voltages
- Max current draw
- KV rating

KV rating

It is defined as the RPM of the Motor per volt. Suppose a motor has 1450KV, then at unit volt it spins at 1450 RPM under no load. Higher KV rated motors will require smaller propellers and vice-versa. The ratio of power required to produce thrust increases with the motor KV rating, i.e., the greater the KV value, the greater the power required to produce the same thrust.

Motor and Propeller Selection Steps

- If the weight of the UAV is known, then
- i. Choose the thrust/weight ratio
- ii. Calculate how much thrust required
- iii. Deciding on the speed of the aircraft (slow or fast)
- iv. Choose the correct KV value
- v. According to the KV value found above, calculate Power/Thrust ratio
- vi. With the required thrust, find the Power needed in Watts
- vii. With the value of W, KV and thrust, finalize a motor from the data provided by the manufacturer
- viii. Find the recommended propeller for this motor as per the data tables

2.1 Motor Selection

Thrust to weight ratio calculation:¹ We assume our UAV in the category of "sport and slow acrobatic" hence according to different RC pilots and users thrust to weight ratio is obtained as

$$\frac{T}{W} = 0.75 \qquad \dots (1)$$

W = weight = 5000g
T = thrust = 3750g

Close to 50% throttle we are able to achieve a cruise speed of 25 m/s at the altitude of 2000m and the effective weight of the UAV is equal to lift generated, thus the thrust produced should compensate only the drag, due to this and other safety margins we are assuming to fly the UAV at 60% throttle and is chosen as criteria for motor selection.

Table	1:	Speed	comparison	for	lift	generation

Cl max	1
ρ	1.006
Spam for Canard	90
Chord of Canard	1196
Spam of rear wing	1534
Chord of rear wing	88
Actual lift of Canard	24.525
Actual life of wing	24.525

Quantity	in mm ²	in m ²
Area of Chanard	107640	0.10764
Area of rear wing	134992	0.134992

Table 2 : Speed required at Throttle

Throttle percentage	RPM	RPS	Velocity (m/s)
12	800	13.333	6.26533
18	1200	20	9.398
24	1600	26.667	12.53066
30	2000	33.333	15.6633
36	2400	40	18.796
42	2800	46.667	21.92866
48	3200	53.333	25.06133
54	3600	60	28.194
61	4000	66.667	231.3266
67	4400	73.333	34.45933
74	4800	80	37.592
81	5200	86.667	40.72466
88	5600	93.333	43.85733
95	6000	100	46.99
100	6300	105	49.3395

Velocity = Pitch of the propeller (m) x rotation in RPS

Table 3: Co	mparison	of	different	Motors
-------------	----------	----	-----------	--------

Four motors-E-Flite Power 60(400KV), E-Flite power $90(325KV)^2$, T-motor $450KV^3$, and AXi 5325-308KV, are capable of providing 3750g of thrust. Thus on performing the analysis on ecalc software we conclude that AXi 5325-308KV has the highest efficiency at 60% throttle, thereby providing higher endurance at optimum.

2.2 ESC Selection

An electronic speed control (ESC) is an electronic circuit that controls and regulates the speed of an electric motor. It may also provide reversing of the motor and dynamic braking. ESC receives signals from the flight controller and provides control of the throttling of the propulsion system.

ESC needs to be sized according to the maximum current flowing to the motor.

According to the AXI motor company's specification, ESC (electronic speed controller) should have the following specification: 90-Amp 25V BL, 20amp BEC. Fig.4.

Figure 3. Motor components

Parameters	E-Flite power 60(400KV)	E-Flite power 90(325KV)	T-motor (450KV)	Axi 5325-308KV
Efficiency at 60% throttle	79	86.8	86.4	87.5
Thrust/Weight	0.9:1	0.86:1	0.94:1	1.21:1
Temperature	75 ° C	38 ° C	50 ° C	51 ° C
Endurance	38-46 min	59-72 min	43-54 min	45-55 min
Current	14.7 A	12.5 A	16.6 A	16.2 A
Weight	380 g	450 g	408 g	595 g

Journal of Mines, Metals and Fuels | 889

Figure 4. ESC

2.3 Propeller Selection

According to ecalc software, the propeller is chosen to be Aeronaut 18.5×12 , where 18.5inches represents the diameter of the propeller and 12 inches is the pitch of the propeller.

2.4 Battery

From the Table 4 we can

finalize Lipo because of its high energy density, less charging time and less maintenance. To operate the UAV at the required endurance, the following battery is been selected and it has the following specifications

Battery Specification: 8000mAh 3S 35C/70C (7.4V) lithium polymer battery pack

No of batteries: 2 (connected in series) Dimension: 52mm × 43mm × 137mm

Figure 5. Propeller dimensions

Figure 6. Propeller spinner

Table 4: Comparison of different batteries

Figure 7. Battery

3.0 Material selection

The primary objective of sizing the UAV was to limit the weight to 5kg. Different types of materials have been analyzed theoretically and validated using Solid works software and carbon fiber material has been chosen with the following properties:

Density = 1780 kg/m^3 Young's modulus = 231 GpaYield tensile strength = 4410 MPaPoisson ratio = 0.37Bulk modulus = 296.15 GPaShear modulus = 84.307 GPaFilament diameter = 6.9 umShear strength = 124 MpaFlexural modulus = 128 GPa

3.1 Center of Gravity Estimation

It is determined by adding weight and moment of each weighing point to determine the total weight and total moment. For structural center of gravity i.e., excluding the battery, payload, flight control systems and avionics, the C.G is found out using the below equation:

$$C.G = \frac{(d_F * W_F) + (d_C * W_C) + (d_W * W_W) + (d_S * W_S)}{Weight} \dots (2)$$

Where the subscripts F,C,W and S refer to Fuselage, Canard, Wings and Stabilizer respectively.

Using equation (2), the moments of individual components are evaluated from the reference point (i.e., from

Characteristics	NiCd	NiMH	Lead acid	Li-ion	Li- Polymer	Resuable alkaline	Li-Fe
Energy density (Wh/Kg)	45-80	60-120	30-50	110-160	100-130	80	100-265
Fast charge time (h)	1	2 to 4	8 to 16	2 to 4	2 to 4	2 to 3	NA
Nominal voltage (V)	1.2	1.2	2	3.6	3.6	1.5	3.3
Fully charged (V)	1.3	1.5 - 1.66	2.1	4.1	4.2	1.7	3.6
Minimum safe charge (V)	1	1	1.8	3.4	3.4	1.2	3
Maintenance requirement	30-60 days	60-90 days	3-6 months	Not required	l Not required	Not required	3-6months

Tuble 5. Center of gravity	
C.G. x	0.5851
C.G. y	0.0025
C.G. z	0.0023

Table 5: Center of gravity

Table 6: Mass budget

Components	Quantity	Mass (kg)
Battery	2	0.870
Fuselage Nose	1	0.228
Propeller	2	0.060
Motor	1	0.595
Fuselage	1	0.423
Wing	2	0.482
Canard	2	0.368
Rudder springs	2	0.003
Wing Springs	4	0.169
Fuselage Tail	1	0.125
Rudder	2	0.120
Spring Shaft	2	0.045
Cap Canard	2	0.054
Cap Wing	2	0.052
T Nut	10	0.002
Screw	8	0.0067
2 Press fitConnector	4	0.0003
Spar	4	0.035
Washer	10	0.0012
Total Weight		3.6401

Table 7: Structural Mass

the nose tip of UAV) and further, the center of gravity is as shown in Table 5.

3.2 Mass Budget

The total mass has been calculated using Solidworks software with Hexcel AS4C type carbon fiber. As shown in Table 3, the overall weight of the TLUAV excluding the payload, avionics and control surfaces is evaluated to be 3.6kg, which fulfills the criteria of the overall weight of TLUAV to be well under 5kg. The remaining weight allocation can be given for payload and recovery systems.

4.0 Wing Deployment Designs

Various concepts were studied towards wing deployment like (a) Telescopic wing mechanism

- (b) Roll out solar array (ROSA)
- (c) Multi Hinge solar array deployment
- (d) Outrider wing release mechanism

A spring-based mechanism was considered. Considering hard drawn steel spring wire of tensile limit (min) =1900 MPa. Assuming the spring geometry to meet the load requirement without exceeding 60% of the material tensile limit at 90° rotation. The full spring length should be about 20 mm and the spring to be inserted with a 25 mm rod. The internal diameter must clear the rod by 15 %. The spring is required as part of an assembly to counter the 20N load at 365 mm.

Equations used:

T = F * r ... (3) $\sigma = 32*T*d3$... (4)

		Density of CF=1780 kg/m3				
		X axis	Y axis	Z axis	Volume of shell	Mass (kg)
Canard	Left	222.5	-299	43	0.000306176	0.545
	Right	222.5	299	33		
Main wing	Left	903.97	-337.5	-31	0.0003726	0.663
	Right	903.97	337.5	-45		
Fuselage	Middle body	591	0	0	0.000204288	0.363
	Payload	114	0	0	0.00004279477513	0.076
	Dome	37.4	0	0	0.00003034987943	0.054
	Tail	1036.66	0	0	0.00001598023463	0.028
Stabilizer	Left	983.75	50	95	0.00002584	0.091
	Right	983.75	50	95		
	Total				0.0009980288892	1.822

Figure 8. Roll out solar array (ROSA)

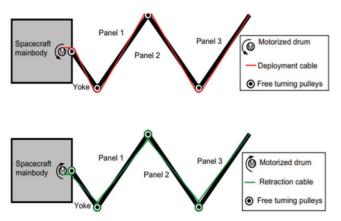


Figure 9. Multi hinge solar array deployment

Figure 10. Outrider wing release mechanism

$$\mathbf{K} = \frac{F}{\theta} \qquad \dots (5)$$

Stress correction

$D_i = D_{rod} * 115\%$	(6)
$D_i D_{rod} 11570$	(0)

$$D_o = D_i + 2d \tag{7}$$

$$c = Dd \tag{8}$$

Actual stress

$$\sigma = \frac{32*T}{\pi * d^3} \mathbf{x} \frac{4c^2 - c - 1}{4c * (c - 1)} \qquad \dots (9)$$

$$N_a = \frac{E * d^4}{10.8 * D * K} \qquad \dots (10)$$

Contribution from ends

$$N_e = \frac{L1 + L2}{3*D*\pi} \qquad ... (11)$$

$$N_b = N_a - N_e \qquad \dots (12)$$

Spring length at free state

 $L_{fs} = (N_a + 1) * d$... (13)

Spring length at loaded state

$$L_{ls} = (N_a + 1 + 0.25) \times d$$
 ... (14)

Table 8: Spring result table for vertical stabilizer

Rates and torques					
Rate per degree	2.109 N-mm/deg				
Spring rate	759.288 N-mm/360				
Max torque	183.180 N-mm				
Physical dimension					
Diameter of spring wire, d	1.079 mm				
Outer diameter of spring, Do	13.658 mm				
Inner diameter of spring, Di	11.5 mm				
Mean diameter of spring, D	12.579 mm				
Number of active coils, Nn	2.718				
Body length	4.012 mm				
Length of arm1	95 mm				
lengthh of arm2	95 mm				
Total arm length	190 mm				
Direction of wind	Left hand				
Spring index, C	11.658				
Material type					
Music wire ASTM A22	8				
Weights and measure	8				
Weight of 1 spring, M	0.0021 Kg				
Length of wire required to make 1	297.4102 mm				
Stress factors					
Stress factors					
Stress factors Shear Modeulus, G	80483.5482 Pa				
	80483.5482 Pa 5245.9733 Pa				

The following results were finalized after iterating with different standard spring materials.

4.1. Wings and Fuselage Assembly

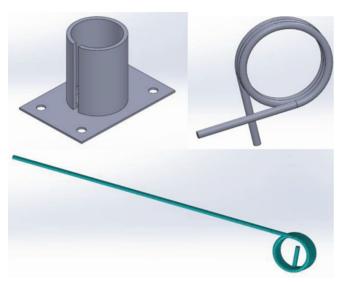


Figure 11. Spring and shaft assembly

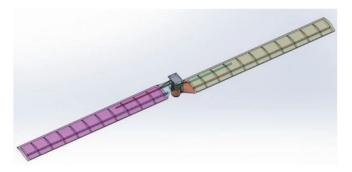


Figure 12. Wing assembly

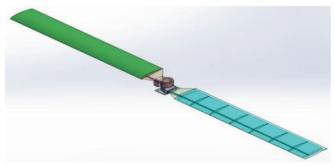


Figure 13. Canard Assembly

5.0 Catapult Launch Design

Similarly, towards design of primary launch system, many existing concepts were studied along with their relative merits.

Table 9: Spring result table for wings

Rates and Torques				
Rate per degree	56.148 N-mm/deg			
Spring rate	20226.318 N-mm/360 deg			
Max Torque	4049.836 N-mm			
Physical Dim	ension			
Diameter of spring wire, d	3.237 mm			
Outer diameter of spring, Do	35.225 mm			
Inner diameter of spring, Di	28.751 mm			
Mean diameter of Spring, D	31.988			
Number of active coils, Nn	3.25			
Body length	13.757 mm			
Length of arm1	240 mm			
lengthh of arm2	240 mm			
Total arm Length	480 mm			
Direction of wind	Left hand			
Spring Index, C	9.882			
Material Type				
Music Wire ASTM A228				
Weights and m	neasures			
Weight of 1 spring, M	0.0522 kg			
Length of wire required to make 1	806.603 mm			
Stress Factors				
Shear Modeulus, G	80483.5482 Pa			
Maximum shear stress, tmax	11152.6202 Pa			
Wahl Correct factor, w	1.1467			

- (a) Weight and pulley launchers
- (b) Spring launchers
- (c) Pneumatic/hydraulic launchers
- (d) Electro-magnetic launchers
- (e) Bungee powered catapult launch

For our requirements, a bungee powered catapult system is considered for further investigation towards requirements.

5.1 Positive Ramp Angle Catapult Analysis

This analysis is done about positive ramp angle catapult design.

The elastic cord is connected to the cradle by one of its ends and then enwrapped over a system of rollers. By the other end, it is firmly attached to the rail body. The elastic cords are tensioned by moving the cradle to the start position where it is locked. After releasing, the force of the elastic

Wing deployment mechanisms	Advantages	Disadvantages
Telescopic Wing Deployment	Compact and simple.Very large wingspan could be folded in small structure	Uniform thickness of the wing cannot be obtained.Consumes power.Heavy.
Roll out Solar Array (ROSA)	 Light weight Compact Uniform wing width obtained Scalable 	Moving parts involvedTemperature constraints
Multi Hinge Solar Array Deployment	SimpleCompactUniform width of wing obtained	Temperature constraintsChance of failure atmechanical joints
Outrider Wing Release Mechanism	SimpleProven technology	- Non uniform width

Table 10: Comparisons of wing release deployment mechanism

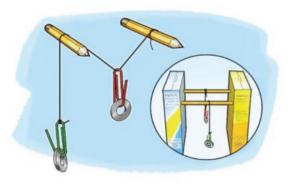


Figure 14. Weight and Pulley Launchers

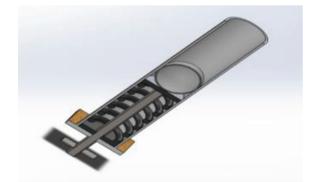


Figure 15. Spring Launchers

cords accelerates the cradle to a maximum speed at the end position where the damper stops it. After the cradle stops, the forward momentum causes the UAV to continue forward and takes over the flight with its propulsion assistance.

The front roller can only rotate and can't move, but the rear one can rotate and has linear displacement. This linear displacement is used to pre-tension the cord.

Figure 16. Pneumatic/Hydraulic Launcher

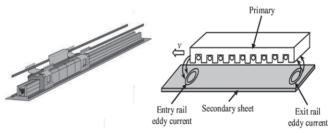


Figure 17. Electromagnetic Launchers

5.1.1 Mathematical model

Assumptions

- The mass of the elastic cords is neglected.
- The mass of the rollers is neglected.
- Direction of the force of the elastic cords that tow the cradle with the UAV is coplanar to the inclined plane.

Figure 18. Bungee Powered Catapult Launchers

Load (in N) to give extension of :-				
Diameter	30	%	75	5%
(mm)	Min (N)	Max(N)	Min(N)	Max(N)
5	29	38	50	65
6.5	58	76	100	130
8	88	116	150	196
9.5	120 170		210	280
12.5	210	280	370	480
16	350	460	500	600
19	500	650	850	1100
22	660	880	1150	1500
26	930	1250	1600	2100
28	1080	1425	1850	2425
32	1410	1875	2425	3200

Figure 19. Bungee cord specifications

Table 11: Launch Systems

- The friction force of the elastic cords over the rollers is neglected.
- Stiffness of the elastic cords is constant.
- It is considered that the UAV propeller pulling force T is constant.
- Elastic cords force Fe is linear to elongation.
- The UAV drag forces are neglected.
- Time = 0.9 sec

Specification

- Considering Thrust from propeller; T = 250N
- Ramp length L = 5 m
- Bungee cord length (non-elongated) b = 8 m
- Ramp angle = α
- Bungee cord stiffness (N/m) = K
- Length of the bungee cord at any instant = x
- Total initial elongation including (with elongation of 1.5 m) x0=14.5m

Balancing Force at equilibrium

(15)
(16)
(17)
(18)
(19)
(20)

- $Mx'' = Mg \sin \alpha k(x-b) + \mu Mg \cos \alpha T \qquad \dots (21)$
- $Mx'' + kx = Mg \sin \alpha + kb + \mu Mg \cos \alpha T \qquad \dots (22)$

$$X'' + x\frac{k}{M} = g (\sin \alpha + \mu \cos \alpha) + b\frac{k}{M} - \frac{T}{M} \qquad \dots (23)$$

Launch Systems	Advantages	Disadvantages
Weight and Pulley Launchers	- Simple and easy to implement.	High launching velocity can not be achievedOccupy large volumeSystem becomes bulky if scaled up
Spring Launcher	- Simple and easy to implement	 Over a long duration the spring might lose its elasticity System becomes bulky if scaled up High exit velocity can not be obtained
Pneumatic/Hydraulic Launch Systems	Heavier UAV can be launchedHigh take off velocity	 Requires Power supply Bulky and difficult to transport Noisy Not feasible for launching from aircraft
Electro-magnetic Launcher	It accelerates UAV smoothly, putting less stress on their airframes.Require less maintenance	- Consumes power - Expensive
Bungee Powered Catapult Launcher	 No energy is consumed More reliable Cost-effective It can be scaled up or down according to the requirement 	 Very high launch velocity cannot be achieved Upon the multiple usagesthe bungee cord would lose its desired stiffness Heavier aircraft are difficultto launch using catapult system

Differential Equation Solution

(Initial conditions at t = 0, x = 0 and x' = 0)

$$\mathbf{x}(t) = \left(x_0 + \frac{T}{k} - \frac{Mg\left(\sin\alpha + \mu\cos\alpha\right)}{k} - b\right)$$
$$\cos\left(\sqrt{\frac{k}{M}} t\right) + \frac{Mg\left(\sin\alpha + \mu\cos\alpha\right)}{k} + b - \frac{T}{k} \qquad \dots (24)$$

$$\mathbf{x}(t)' = \left(x_0 + \frac{T}{k} - \frac{Mg\left(\sin\alpha + \mu\cos\alpha\right)}{k} - b\right) \sqrt{\frac{k}{M}} \sin\left(\sqrt{\frac{k}{M}} t\right) \dots (25)$$

$$\mathbf{x}(t)^{"}=-\left(x_{0}+\frac{T}{k}-\frac{Mg\left(sin\alpha+\mu\cos\alpha\right)}{k}-b\right)\frac{k}{M}\mathrm{Cos}\left(\sqrt{\frac{k}{M}}t\right)...(26)$$

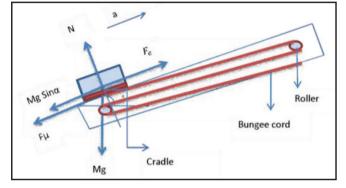
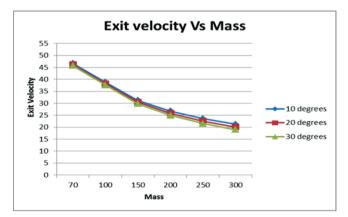



Figure 20. Free body diagram for positive launch angle

Plotting exit velocity VS Mass graph at different ramp angles At constant stiffness K = 800 N/m

Graph 1: Velocity VS Mass at different angles

Plotting stiffness VS Mass graph at different ramp angle at constant Exit velocity V = 21.7 m/s. (Graph 2)

In the case of plotting exit velocity vs mass graph at different ramp angles at constant stiffness following observation was made

- As mass increases the exit velocity decreases for given ramp angle
- As the ramp angle increases exit velocity for given mass decreases

Graph 2 Stiffness VS Mass at different angles

In the case of plotting stiffness VS mass graph at different ramp angles at constant exit velocity following observation was made

- As mass increases the required stiffness of bungee cord increases for given ramp angle
- As the ramp angle increases the stiffness of the bungee cord increases for a given mass.

5.2 Negative Ramp Angle Catapult Analysis

This analysis is done for following ramp design.

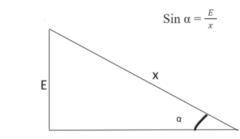


Figure 21. Ramp design

The elastic cord set is connected to the tube by one of its ends and by the other end it is firmly attached to the rail body. The elastic cords are tensioned by moving the UAV to the start position where it is locked. After releasing, the force of the elastic cords accelerates the tube along the launching rail to the end position. The tube reaches a maximum speed at the end position where the damper stops it. After that tube stops, the forward momentum causes the UAV to continue forward and launch it.

5.2.1 Mathematical model

Assumptions:

• The mass of the elastic cords is neglected.

- Direction of the force of the elastic cords that tow the cradle with the UAV is coplanar to the inclined plane.
- Stiffness of the elastic cords is constant.
- Elastic cords force Fe is linear to elongation.
- The UAV drag forces are neglected.
- Time = 0.5 sec

Specification:

- Ramp elevation = α
- Bungee cord length = b
- Elongation of cord = 20-80%
- Friction coefficient $\mu = 0.25$
- Height of ramp = E
- Ramp length = x = 1.75 * b
- Length of the bungee cord at any instant = x

Balancing Force at equilibrium

X axis: Mg sin α + Fe - F μ =0 ... (27) Y axis : Mg cos α - N=0 ... (28)

From newton's 2nd law we know that

$$F_{NET} = M^*a = Mx''$$
 ... (29)

 $M = m_{UAV} + m_{Tube} + m_{cradle} \qquad ... (30)$

Elastic force
$$Fe = k (x - b)$$
 ... (31)

Frictional Force
$$F\mu = \mu N = \mu Mg \cos \alpha$$
 ... (32)

... (34)

$$M x(t)'' = Mg \sin \alpha + k(x-b) - \mu Mg \cos \alpha \qquad \dots (33)$$

 $x(t)''-xkM = g(sin\alpha - \mu cos\alpha) - bkM$

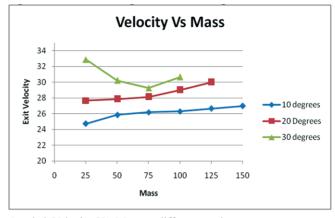
Differential Equation Solution

(Initial conditions at t = 0, x = 0 and x' = 0)

$$\mathbf{x}(t) = \frac{(Mg \sin\alpha - kb - \mu Mg \cos\alpha)}{2k} e^{t} \sqrt{\frac{k}{m}} + \frac{(Mg \sin\alpha - kb - \mu Mg \cos\alpha)}{2k} e^{-t} \sqrt{\frac{k}{m}} - \frac{Mg \sin\alpha}{k} \dots (35)$$

$$+\frac{\mu m g \cos a}{k}+b$$

$$x(t) = \frac{(Mg \sin \alpha - kb - \mu Mg \cos \alpha)}{2k} \left(\sqrt{\left(\frac{k}{m}\right)} \right) e^{t \sqrt{\frac{k}{m}}} + \frac{(Mg \sin \alpha - kb - \mu Mg \cos \alpha)}{2k} \left(-\sqrt{\left(\frac{k}{m}\right)} \right) e^{-t \sqrt{\frac{k}{m}}} \qquad \dots (36)$$


$$\mathbf{x}(t)^{"} = \frac{Mg (sin\alpha - \mu \cos\alpha) - bk}{2m} e^{t} \sqrt{\frac{k}{m}} + \frac{Mg (sin\alpha - \mu \cos\alpha) - bk}{2m} e^{-t} \sqrt{\frac{k}{m}} \qquad \dots (37)$$

Plotting exit velocity vs Mass at different ramp angles at 75% elongation of bungee cord. (Graph 3)

Plotting Stiffness vs Mass at different ramp angles at 75% elongation of bungee cord. (Graph 4)

From the analysis following observation is made:

• As the mass increases the exit velocity and stiffness of the bungee cord increases.

Graph 3 Velocity VS Mass at different angles

Graph 4 Stiffness VS Mass at different angles

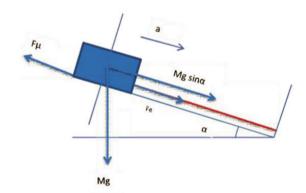


Figure 22. Free body diagram for negative launch angle

• As the ramp angle increases exit velocity increases.

Therefore, from the above results we can conclude that the optimal launching ramp angle for a lighter UAV would be 30° .

5.3 TL-UAV Launch System

Launching the TL-UAV along the negative ramp angle with total mass to 7 kg (for 5 kg TUAV with 2 kg tube) given below are the acceleration, velocity, and stiffness of cord at different ramp angles.

TRIAL 1	AT 75% EL	ONGATIO	N	K RANGE	FROM 36.7	73-2350.78
μ	0.25					
α	0.17452		FROM	N DIFFERE	NTIAL EQ	
Μ	7		V	26.25		
g	9.81		а	108.09		
b	1.815		FROM	M MOTION	EQ	
k	110		V	26.242		
TIME Sec	0.5					
E RAMP	HEIGHT	0.551				
S RAMP L	ENGTH	3.173				

Table 12: Parameters at 10° Ramp angle

Table 13: Parameters at 20° Ramp angle

TRIAL 2	AT 75% EL	ONGATIO	N	K RANGE	FROM 35.2	27-2257.49
μ	0.25					
α	0.17452		FROM DIF	FERENTIA	L EQ	
Μ	7		V	27.216		
g	9.81		а	113.78		
b	1.89		FROM MO	DTION EQ		
k	114		V	26.49		
TIME Sec	0.5					
E RAMP	HEIGHT	1.136				
S RAMP L	ENGTH	3.32				

Table 14: Parameters at 30° Ramp angle

TRIAL 3	AT 75% ELONGATION		K RANGE FROM 32.36-2071.		36-2071.19	
μ	0.25					
α	0.17452		FROM DIF	FERENTIA	l eq	
Μ	7		V	30.65		
g	9.81		а	131.09		
b	1.815		FROM MO	DTION EQ		
k	120		V	30.73		
TIME Sec	0.5					
E RAMP	HEIGHT	1.801				
S RAMP L	ENGTH	3.6				

From the above trials, it can be seen that when a 5kg UAV is launched at a ramp angle of 30°, the maximum exit velocity is obtained.

6.0 Results and Discussions

Primary objective being fitting the UAV into a 6inch diameter tube with max length arrived from earlier preliminary study being 1.13m. A suitable wing foldable mechanism is designed and analyzed along with a foldable propeller mechanism with an electric propulsion system. UAV can fit inside the tube with some clearance spaces, therefore friction between UAV

898 | Vol 71(7) | July 2023 | http://www.informaticsjournals.com/index.php/jmmf

and tube is low.

Since the structural weight of the UAV is less than 30% of 5 kg, we propose carbon fiber material for the TLUAV and it serves the purpose of reducing the weight drastically unlike aluminium or stainless steel. The final design of the TLUAV consists of 4 torsional springs for wing folding, 6 ribs in the Canard and 10 ribs in the rear wing. Each of these ribs are connected with a 5mm spar which is a hollow rod made up of Carbon fiber to decrease the overall weight of the TLUAV. the following Fig. shows the complete design

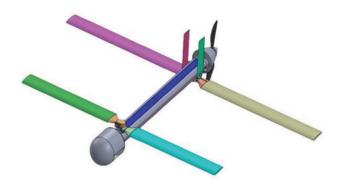


Figure 23. Final design of TLUAV

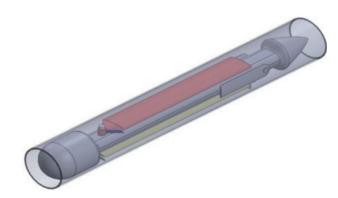


Figure 24. Wings in folded condition (inside the tube)

7.0 Conclusions

Unmanned Aerial Vehicle design has been carried out with an objective of Tube Launched UAV, wherein the complete UAV must fit inside a cylindrical tube and launch from the tube in a very short time. Mainly mechanical design and analysis are carried out towards wing folding for fitting the folded UAV inside a tube of 6 inch diameter and length of 1.13m. In addition, Propulsion system sizing, catapult launch system design including comparative study of different ramp angles for launching the tube with encapsulated UAV is also highlighted.

The main advantage of using Tube Launched Unmanned Aerial Vehicles is that they can be transported in compact spaces like tubes that can be carried in ships, helicopters, planes, and larger drones.

Some areas of the current paper which have further scope for improvement and have not been analyzed are Control surface sizing, Vertical Stabilizer etc. which will be taken up later. Current paper focused only on wing folding and catapult system design aspects apart from electric propulsion sizing.

Abbreviations

DDM	D	•
RPM	Rotation	per minute
1/1 1/1	Rotation	per minute

- W Watts
- KV constant velocity of motor
- RC Remote control
- T Thrust
- k Elastic stiffness
- x_0 Initial displacement
- D_{rod} Shaft diameter
- N_e Contribution from end
- N_a Number of active coils
- θ Deflection
- c Spring index
- D Mean diamter
- d Wire diameter
- E Young's modulus
- σ Stress

8.0 References

- 1. Multirotor Sizing Methodology with Flight Time Estimation, by Marcin Biczyski, Rabia Sehab, James F. Whidborne, Guillaume Krebs, and Patrick Luk.
- 2. https://www.e-fliterc.com/e-flite/shop/airplanes/parts-electronics-and-accessories/motors/
- 3. https://store.tmotor.com/goods.php?id=828
- Farrukh Mazhar, structural design of a UAV wing using finite element method 51st AIAA/ASME/ASCE/ AHS/ASC Structures, Structural Dynamics, and Materials Conference
- 5. Göktuð kiliç, structural design and analysis of uav wing, istanbul technical university, faculty of aeronautics and astronautics
- 6. Alberto Martinetti, Simulating mechanical stresses on a micro UAV body frame for selecting maintenance action.
- 7. Wojciech Grodzki, Modeling of UAV's Composite Structures and Prediction of safety factor, composite materials, simulation, CAx systems.
- 8. https://www.scientificamerican.com/article/lightenthe-load-with-a-pulley/
- 9. https://djrohu-engineering.medium.com/the-launcher-778689dc9dea
- Launch System Design Methodology for small unmanned Aircraft applications AIAA atmospheric flight mechanics Conference 22-26, 2015, Dallas, TXAIAA2015-2858
- Analysis of UAV Bungee cord Launching Device, Scientific Technical Review, 2013, Vol.63, No.3, pp.41-47.