

Print ISSN : 0022-2755 Journal of Mines, Metals and Fuels

Contents available at: www.informaticsjournals.com/index.php/jmmf

Microstructure Characteristics and Properties of NiCrMoFeCoAl-30%SiO₂ Composite Coating on T22 Boiler Tube Steel

Viresh G Patil^{1*}, B. Somasundaram¹ and Sakthivel Kandaiah²

^{1*}School of Mechanical Engineering, REVA University Bengaluru, India. E-mail: patilviresh751@gmail.com / somasundarb@reva.edu.in ²Department of Chemistry, School of Applied Sciences, REVA University Bengaluru, India.

Abstract

In the present investigation, the NiCrMoFeCoAl-30%SiO₂ composite coating was sprayed on T22 bare steel with the HVOF technique. HVOFtechniqueallows the production of dense, excellently structured coatings with smoother surfaces and enhanced mechanical properties of the boiler materials. The produced coatings are characterized for their microstructure, and corrosion resistance by high-temperature corrosion. The specimen microstructure has been characterized by SEM/EDS and XRD methods. The coating thickness, porosity, microhardness, and coating density have been assessed.

Keywords: SEM/EDS Technique, Thermal spraying

1.0 Introduction

As a result, the variables of porosity variability and heat treatment are related to the values of microhardness [1]. Premkumar and Balasubramanian [2] were investigated the behaviour of HVOF-sprayed (27% Cr_3C_2 -23% Ni-50% Cr) coatings on SA 210 Grade C boiler material at high temperatures and their mechanical characteristics. The characterization of coatings is porosity, microstructure, coating thickness, and microhardness. SEM/EDS and XRD methods are employed to examine the as-sprayed coatings. Thermal spraying is considered effective to install a preservative coating, without affecting any other material of the material [3-6]. The carbide ceramic peak has a substantial effect on wear resistance, but the NiCr matrix allows for corrosion resistance [7]. Senthilkumar et al. [8] studied the

effect of thermal cycle on HVOF sprayed NidCr coating in boiler tubes. NiCr nanostructured coatings revealed higher metallurgical and mechanical properties than conventional coatings. According to the findings of the experiments, the nanostructured coated samples had a denser and more uniform microstructure than the traditional ones. XRD, HR-TEM, microhardness test, and SEM/EDAX techniques are used to characterize the HVOF coated sample and feedstock powder. Several investigations have evaluated entire coating designs [9-13]. Song et al. [14] studied the high-temperature oxidation behaviour and microstructure of HVOF (gas and liquid-fuelled) sprayed Ni50Cr coated ASME P92 alloy in thermal power plants. The kinetics of the oxidation were examined by thermogravimetric analysis. The porosity and microstructures of the two coatings were investigated using oxygen content analysis, mercury intrusion porosimeter, XRD, and SEM/EDAX methods. In high-temperature environments, HVOF coatings exhibit great durability, strong

^{*}Corresponding Author

bond strength, and corrosion resistance [15-16]. Vasudev et al. [17] studiedthe bi-layer Alloy-718/NiCrAlY coated grey cast iron substrate's high-temperature oxidation and erosion behaviour was observed using HVOF spraying. The oxidized products are characterized using microhardness tests, SEM/ EDAX, and XRD methods. Various studies have recommended that hot-rolled cermet with a high fine-grained carbide can have better wear and tear [18]. Zhang et al. [19] investigated the Isothermal Oxidation of the HVOF (kerosenefuelled) sprayed Ti₂AlC coatings. SEM, optical microscope, and XRD techniques investigated coatings' cross-sectional microstructure and surface morphology.

The present work used the HVOF technology to produce the NiCrMoFeCoAl-30%SiO₂ composite coating on T22 steel. The as-sprayed coatings were characterized using XRD and SEM/EDS techniques. The primary goal of this research was to find a suitable covering for protecting bare T22 steel.

2 Experimental Section

2.1 Substrate Material

In the present examination, T22 steel has been identified as the bare material. Specimens for exposure experiments were sectioned from T22 substrate steel in square ($25\text{mm} \times 25\text{mm} \times 5\text{mm}$) forms. Before HVOF formulation, sectioned specimens were grit blasted with Al₂O₃. During spraying, the drum jigs were turned on a turntable to achieve uniform coating with a minimized edge effect. The nominal chemical composition of T22 substrate steel is shown in Table 1.

2.2 Formulation of the Coating

The HVOF technique was used to apply a composite coating of NiCrMoFeCoAl-30%SiO₂ on the T22 bare steel. The particle size of the coating powder is -45+15 m. Steel tubes used in boiler construction are subjected to high

temperatures [37]. Table 2 lists the powder compositions used in the present investigation. Throughout the coating process, all of the usual spray parameters and the spray distance were kept constant. The achieved average coating thickness was 197 μ m. The coatings were applied to the basic metal's six edges. The grit blasting was done to achieve a fine surface roughness and encourage the greatest possible adherence between bare and coating. The specimens' microstructure and compositions are premeditated using SEM and EDS techniques. The coating phases were examined using the XRD method.

2.3 SEM Analysis NiCrMoFeCoAl-30%SiO₂ Powder

Figure 1 depicts the SEM morphology and surface composition distribution of the powders based on EDS investigation. With certain bigger crystallites, the typical particle size distribution varies from 15 to 55 μ m. The EDS mapping shows the distribution of elements in the particles, with Ni, Si, and Cr being the most abundant.

2.4 Coatings Characterization Techniques

Based on ASTM B 276 and an image analyzer (Metaplus software), the porosity of the composite coatings is calculated. The porosity of coated steel was calculated for each sample using the mean value of the eight values. A cross-sectional micrograph of coating was made possible with the aid of the SEM. The coating thickness is assessed using an inverted metallurgical microscope (Olympus BX53M Upright metallurgical microscope). The Micro Vickers Hardness tester (VH1102) was used to measure the microhardness of the coatingat eight distinct points on the coated cross-section sample under a 300g load. The samples were sectioned, mounted in transoptic powder, and polished after the surface characterization procedures. A mirror finish was made possible

Fe	Ni	Cr	Ti	Al	Мо	Mn	Si	С
Bal.	-	2.55	-	-	1.10	0.52	0.43	0.14

Table 1: Chemical composition (wt%) of T22 bare steel

Table 2: Chemical composition (wt. %) of the composite	coatings
--	----------

		1	()		8		
HVOF coating	Ni	Cr	Мо	Fe	Со	Al	SiO ₂
NiCrMoFeCoAl-30%SiO ₂	39.9	15.4	2.1	4.9	4.2	3.5	30

Figure 1: SEM image and EDS spectra of NiCrMoFeCoAl-30%SiO₂composite powder

with the assistance of the diamond paste $(0.3 \ \mu\text{m})$. The coated and bare surfaces underwent XRD investigation using the X-Ray diffractometer. It maneuvers at 40 kV and 30 mA employing CuK radiation. Within the 20 range of 10° to 80°, the specimens were scanned. The surface, cross-sectional composition, and morphologies of coated and bare samples are characterised using the SEM/EDAX techniques.

3 Results and discussions

3.1 Characterization for As-deposited Coating

The optical microscope has estimated the coating thickness to be 200 μ m. Figure 2 depicts the microhardness of an HVOF composite coating. With a load of 300g and a dwell time of 10 s, microhardness tests were carried out on a coated specimen along the cross-section employing the model VH1102. The T22 bare steel has a microhardness of around 270.HV_{0.3}. It has been established that the NiCrMoFeCoAl-30%SiO₂ composite coating has typical microhardness value of around 801.9HV_{0.3}. These coating have a porosity of less than 1.6%. Table 3 summarizes the coating characterizations.

3.2 XRD analysis of the As-sprayed Coating

Figure 3 shows the XRD diffractograms of blended powder and as-sprayed coating. The principal reflections of the blended powder and coated specimens are substantially identical. Major phases in NiCrMoFeCoAl-30%SiO₂ blended powder and as-sprayed coating are assigned to Al₂SiO₅, MoNi, and minor phases are attributed to Fe_2O_3 . It has been stated on the coating's brief oxidation phase after being pre-oxidized with an Al_2O_3 phase protective oxide scale.

3.3 Surface Morphology of the As-sprayed HVOF Coating

Figure 4 shows a SEM image of the as-sprayed composite NiCrMoFeCoAl-30%SiO₂ coating. The elemental distribution of the specified domain and point surface is presented. The microstructure of the HVOF coating was found to be mostly homogeneous and packed tightly. The existence of substantial elements Si, Al, and Ni is confirmed by the EDS

Figure 2: Microhardness profile for HVOF coating throughout the cross-section

HVOF coating	Porosity (%)	Vickers Microhardness, VHN (HV _{0.3})	Coatingthickness (mm)
NiCrMoFeCoAl-30%SiO ₂	1.69	801.9	197

Table 3: Variation of porosity, microhardness, and coating thickness of coated sample

Figure 3: XRD diffractogramsof feedstock powder and assprayed NiCrMoFeCoAl-30%SiO₂ composite coating

analysis of the as-sprayed NiCrMoFeCoAl-30%SiO₂ coating at chosen region 1. Along with oxygen, the EDS spot 1 also shows the existence of Al, Si, and Mo.

3.4 Cross-sectional Analysis of the As-sprayed Coating

Figure 5 shows the BSEI of cross-sectional morphology and associated EDS analysis of the HVOF as-sprayed composite coating. For long-term stability, the HVOF's adherence to the bare steel is additional crucial factor. In the cross-section image, the HVOF coating has homogenous and compact splat-like characteristics, and the bare/HVOF coating interface seems hard and undamaged. The Ni, Mo, and Fe components are present in just trace amounts at point 1 of the cross-sectional HVOF as-sprayed NiCrMoFeCoAl-30%SiO₂ coating, which is mostly composed of Cr, Al, and O. Point 2 has a high concentration of Si, Cr, and Ni scales. The interface between the coating and the T22 bare steel is described in Point 3, which implies that the primary amounts of Ni, Cr, and O scales are noted.

Figure 4: 4SEM/EDS analysis of NiCrMoFeCoAl-30%SiO₂ composite coating

Figure 5: SEM/EDS analysis (wt.%) across the cross-section of the HVOF as-sprayedNiCrMoFeCoAl-30%SiO₂composite coating

4.0 Conclusions

- It has been possible to obtain a NiCrMoFeCoAl-30%SiO₂ coating with a thickness size of 197 m and an average microhardness of coating in the range of 801.9 HV_{0.3}.
- The NiCrMoFeCoAl-30%SiO₂ coating region did not produce the voids. The typical deviation value was small, explaining the homogenous structure with 1.69% low porosity.

References

- C.K. Lin, C.C. Berndt, Proceedings of the 1993 National Thermal Spray Conference, Anaheim, CA, 7–11 June, 1993, p. 561.
- Premkumar, K. and Balasubramanian, K.R., 2019. Evaluation of cyclic oxidation behaviour and mechanical properties of nanocrystalline composite HVOF coatings on SA 210 grade C material. *Engineering Failure Analysis*, 97, pp.635-644.
- Bala, N., Singh, H. and Prakash, S., 2009. Hightemperature oxidation studies of cold-sprayed Ni–20Cr and Ni–50Cr coatings on SAE 213-T22 boiler steel. *Applied Surface Science*, 255(15), pp.6862-6869.
- W. Tillmann, E. Vogli, I. Baumann, G. Kopp, C. Weihs, J. Therm. Spray Technol. 19 (1–2) (2010) 392.
- A. Rico, J. Gómez-García, C.J. Múnez, P. Poza, V. Utrilla, Surf. Coat. Technol. 203 (2009) 2307.
- Roy, M., Pauschitz, A., Polak, R. and Franek, F., 2006. Comparative evaluation of ambient temperature friction behaviour of thermal sprayed Cr₃C₂-25 (Ni20Cr)

coatings with conventional and nano-crystalline grains. *Tribology International*, 39(1), pp.29-38.

- J. Rapouch, Degradation of Cr₃C₂-NiCr coating prepared by the HVOF technique, *Kovove Mater*.57 (2013)82–86.
- Senthilkumar, V., Thiyagarajan, B., Duraiselvam, M. and Karthick, K., 2015. Effect of thermal cycle on Ni–Cr based nanostructured thermal spray coating in boiler tubes. *Transactions of Nonferrous Metals Society of China*, 25(5), pp.1533-1542.
- S. Al-Mutairi, M. Hashmi, B. Yilbas, and J. Stokes, Microstructural Characterization of HVOF/Plasma Thermal Spray of Micro/Nano WC-12% Co Powders, *Surf. Coat. Technol.*, 2015, 264, p 175-186
- B. Song, Z. Pala, K. Voisey, and T. Hussain, Gas and Liquid- Fuelled HVOF Spraying of Ni50Cr Coating: Microstructure and High Temperature Oxidation, *Surf. Coat. Technol.*, 2017, 318, p 224-232
- J. Cabral Miramontes, G.K. Pedraza Basulto, C. GaonaTiburcio, P.D.C. Zambrano Robledo, C.A. Poblano Salas, and F. AlmerayaCaldero'n, Coatings Characterization of Ni-Based Alloy Applied by HVOF, *Aircr. Eng. Aerosp. Technol.*, 2018, 90(2), p 336-343
- S. Saladi, P. Ramana, and P.B. Tailor, Evaluation of Microstructural Features of HVOF Sprayed Ni-20Al Coatings, *Trans. Indian Inst. Met.*, 2018, 71(10), p 2387-2394
- S. Tailor, A. Modi, and S. Modi, Thermally Sprayed Thin Copper Coatings by W-HVOF, *J. Therm. Spray Technol.*, 2019, 28(1-2), p 273-282
- Song, B., Pala, Z., Voisey, K.T. and Hussain, T., 2017. Gas and liquid-fuelled HVOF spraying of Ni50Cr

coating: Microstructure and high temperature oxidation. *Surface and Coatings Technology*, 318, pp.224-232.

- Yin B, Liu G, Zhou H, Chen J and Yan F 2010 Sliding wear behaviour of HVOF-sprayed Cr₃C₂-NiCr/CeO2 composite coatings at elevated temperature up to 800°C *Tribol. Lett.*, 37 463-475.
- Liam Reddy, Philip Shipway, Colin Davis and Tanyir Hussain 2017 HVOF and Laser-Cladded Fe-Cr-B Coating in Simulated Biomass Combustion: Microstructure and Fireside Corrosion Oxid. *Met.* 87 825-835.
- Vasudev, H., Thakur, L., Bansal, A., Singh, H. and Zafar, S., 2019. High temperature oxidation and erosion behaviour of HVOF sprayed bi-layer Alloy-718/ NiCrAIY coating. *Surface and Coatings Technology*, 362, pp.366-380.
- C.-J. Li, Y.-Y. Wang, G.-J. Yang, A. Ohmori, K.A. Khor, *Mater. Sci. Technol.* 20 (2004) 1087.
- Zhang, Z., Lai, D.M.Y., Lim, S.H., Chai, J., Wang, S., Jin, H. and Pan, J., 2018. Isothermal oxidation of the Ti2AlC MAX phase coatings deposited by kerosenefuelled HVOF spray. *Corrosion Science*, 138, pp.266-274.