HARSHIT AGRAWAL
BHATU KUMAR PAL

and

SNEHAMOY CHATTERJEE

Optimization of opencast mines using minimum
cut algorithm — a case study from iron mine

The demand and supply gap are on a rising trend in this
developing world for all the minerals/ores. There is an acute
need for suitable technological advancements in the field of
mine planning with an aim for zero mining waste. The
advanced technology will not only help in the optimum
extraction of ores but will also maximize the profit ensuring
safety and productivity. In this paper, an open pit
optimization algorithm is proposed using a minimum cut
algorithm and heuristic algorithm. The parametric minimum
cut algorithm is used to generate pit shells, same as other
mining software, and the resource constraints are imposed
on the generated pit shells results using the heuristic
algorithm to optimize the production plan. A case study is
presented in an iron ore deposit from India, and the results
were compared to the traditional method.
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1.0. Introduction

he fast-paced development of society demands
increased supply of raw materials for its sustenance

which has pressurized the mining industry. The raw
materials being non-renewable, are finite in nature. Optimum
exploitation of these minerals is thus, needed for sustainable
development. Depending on the nature of occurrence of these
raw materials, a suitable method of mining is decided for its
exploitation. The method of mining which offers a fast return
on investment (ROI), better economic viability and safety is
always preferred. Depending on the depth of the ore deposits,
there can be two broad methods of mining the orebody, i.c.,
from surface mining or from underground mining. The surface
mining operations can be classified as an open pit, opencast,
strip, alluvial and in-situ mining (Hartman and Mutmansky,
2002). Opencast mining is an improvement to the already
existing concept of open pit mining, catering to optimum land
utilization for piling overburden for future reclamation
purposes. It is the method of choice for extracting shallow
depth deposits if other factors like depth of ore deposit, land
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acquisition, environmental clearance, ROI, etc. commends
opencast mining techno-economically feasible. On the other
hand, the underground method of mining is done for
extracting deep-seated deposits which are not economic to
be extracted from the surface. Underground mines have a
comparatively long gestation period (Envis, 2016), as initially
an access road is made to reach the ore deposit and
subsequently development headings are made below ground
to expose the ore before production commences. This causes
delay in ROI. With the availability of high capacity heavy
earth moving machines (HEMMSs) in opencast mining, the
rate of production is fast, while ensuring the safety of men
and machinery. High capacity machineryfacilitates faster
removal of overburden thus, facilitating early ROI. Hence, an
opencast method of mining is the preferred choice if socio-
economic parameters are in favour of such exploitation.

The ore deposits need to be optimally exploited as it is
non-renewable in nature. A great concern also exists in terms
of optimal land use since land acquisition is a serious concern
while planning surface mines. Hence, mine planners have to
keep a vigil on optimum use of the available land while
optimizing the ore production. The profitability of any mining
operation depends on how meticulously its planning has been
done (Songolo, 2010).

Defining the ore boundaries, mining configurations, pit
limits, sequences/pushbacks, optimizing the production and
net present value (NPV) of an ore deposit manually based on
the available geotechnical information is a herculean task.
With manual calculations, the extent of mines being planned
was confined to a smaller scale with a limited number of
blocks. Optimizing large scale operations having millions of
blocks is not possible manually (Edmonds and Karp, 1972).
Advancements in computer technologies and availability of
bespoke mine-planning and designing software have made it
possible to optimally plan large mines. With the use of mine
planning software earlier economically unfeasible low-grade
deposits can now be mined profitably (Dowd and Onur, 1992).
The software can solve complex mine problems, which have
lessened the burden of mine planners from doing manual
calculations which were tedious, time-consuming and prone
to errors (Dorigo and Stutzle, 2004).
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The extraction of ore forming pit is a sequential process.
It gets completed in a number of phases with different pit
layouts in each phase. These time dependent sequence of pits
are called as push-back designs. It describes how a pit will
expand optimally in due course of time depending on varying
economic parameters. The mining operation in each push-
back is so conducted as to maintain the overall slope angle
and pit geometry. These push-backs form important input for
short term production planning which is nested to get long-
term planning (Hochbaum and Chen, 2000; Johnson, 1968;
Wilke and Reimer, 1977). Final mining sequence is decided
such that the maximum economic return is obtained subjected
to all operational constraints (Sevim and Lei, 1998). With the
sole objective of developing push-back designs to optimize
the NPV, net profit and extraction from the pit, a sequence is
established which leads to maximum extraction (Jordi and
Currin, 1979). Several pushback algorithms have been
developed since 1960’s. These algorithms provide a
computing search technique to find solutions to optimization
problems. The essence of pushback design lies in production
scheduling and sequencing, and thus determines the mine life
and therefore, the subsequent cash flows including capital
requirements, operational costs and revenues (Songolo,
2010).

Open pit optimization means, determination of optimal pit
limit for an ore deposit under a set of mining and economic
constraints giving optimized NPV (Schofield and Denby, 1993;
Cardu et al., 2006). The pit limits are set as the first step in
long and short-range mine planning ensuring that ultimate pit
limit represents the final boundary of deposit to be extracted
within the pit. The ultimate pit limits thus define the amount
of mineable ore, metal content and associated amount of
overburden to be removed during the life of operation
(Kennedy, 1990). Optimization depends on parameters like
metal price, the cost of mining and the cost of processing.
The irony is, most of the factors governing the open pit
design i.e., the geometry of the orebody, grade distribution
of ore within the orebody, maximum allowable slope angles,
metal cost, etc. are beyond the control of mine planners.The
economics of operation depends on stripping ratio selected,
production rate, equipment selection, etc. which rely on
hands of mine planners and engineers (Hartman, 1992). The
optimized pit layout should reflect the overall profitability of
mine investment.

The ultimate pit gives a list of blocks which is to be
extracted giving maximum NPV while obeying the slope
constraints (Kennedy, 1990). Within the ultimate pit,
pushbacks are designed to divide the deposit into nested pits
starting with lowest stripping ratio and maximum ore value to
largest pit with relatively higher stripping ratio and lower ore
value. These pushbacks also provide adesign for haul roads
alignment during different phases of production on yearly
basis to schedule yearly production from different benches
(Dagdelen, 2001). This roughly corresponds to the optimal
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evolution of the mine over time. The production schedule is
developed keeping in mind the annual production targets of
both overburden and ore.

Optimization algorithms like, Ford-Fulkerson algorithm
(Ford and Fulkerson, 1956; Ford and Fulkerson, 1957), Lerchs-
Grossmann algorithm (Lerchs and Grossmann, 1965),
minimum-cut/maximum-flow algorithm (Dinic, 1970; Picard,
1976; Goldberg and Tarjan, 1988; Padberg and Rinaldi, 1990;
Hao and Orlin, 1992; Hochbaum, 2001; Hochbaum, 2008),
meta-heuristic algorithm (Whittle, 1990; Sattarvand and
Delius, 2008; Sattarvand and Delius, 2013), fundamental tree
algorithm (Ramazan et al., 2005), etc. serves as an handy tool
for mine planners in developing optimized mine plans for
opencast mines. This ensures maximum profitability from
production based on the BEVs of blocks present in ultimate
pit limit (UPL) design. These algorithms are simple to
formulate, requires lesser computational time and can
incorporate complex mining constraints like working slope
angle to provide better accuracy and reliability while being
user-friendly (Dowd and Onur, 1992). Overall life of the mine
is given as the probable time required to mine all blocks
present in UPL, in such a sequence as to maximize the profit.
Ultimate pit limit algorithm (Dagdelen and Johnson, 1986)
based on Lagrangian parametrization help in generation of
block models having different BEVs to develop time-
dependent push back designs. Push backs with minimum
stripping ratio is then developed (Ramazan and Dagdelen,
1998). The push-back so obtained is used to plan short-term
planning and then developing daily, weekly, monthly,
quarterly, half-yearly and yearly production plans (Hochbaum
and Chen, 2000; Johnson, 1968; Wilke and Reimer, 1977). The
block model method of open pit optimization has been
presented in this paper.

In this paper, a hybrid minimum cut algorithm with the
heuristic algorithm as proposed was used for pushback
design and production planning of an open pit iron mine from
India. The study aims to generate pushbacks for meeting
long-term production target. This will provide a competitive
edge in global mining scenario as meticulous planning of ore
reserve for optimized production is the need of the hour.

2.0 Methodology

In nature ore occurs in conjunction with waste materials
(overburden) as shown in Fig.1. The ore presented in the Fig.
1 is in lenticular shape surrounded by waste materials. These
waste materials need to be removed sequentially from the
surface to reach to the ore. This operation if done from
surface is termed as opencast mining. As mining progresses,
the land is excavated in a proper sequence to form pits or
push-backs. The size of push-backs increases gradually to
give ultimate pit design before mining ceases. The final shape
of the pit is to be decided during planning stage keeping
various operational and economic constraints into
consideration (Johnson, 1968; Jordi and Currin, 1979;
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Fig.1 A block diagram showing ore and waste as it occurs in nature
(Sainsbury, 1970; Lerchs-Grossmann, 1965; Hustrulid and Kutcha,
1995)

Fig.2 Ore and waste blocks have been assigned adifferent block
economic value as shown in different colors.

where, T is the tonnage production of ore, G is the average
grade of processed ore, REC is the recovery (in percentage),
market price is the price of finished ore, MC is the mining
cost of the ore (including overhead charges like royalty,
compensation, etc.) and PC is the processing cost of the ore.

A cut-off grade is determined such that the net revenue,
is a positive value. Once the cut-off grade is determined, all
blocks having average ore grade below the cut-off grade is
considered as waste as shown in Fig.2. Determination of cut-
off grade of a deposit is of prime importance as all planning
calculations are based on cut-off grade values. Block
economic values (BEVs), are then calculated for each of the
ore blocks using eqn. (2) as,

Net revenue; — MC; — PC;, if Net revenue; > PC;

BEV; = { —MC;, otherwise

}.@)

Where, BEV, is the block economic value of i block, net
revenue, is the net revenue generated from i’ block using
equation (1), where, T, is the tonnage production from i
block, G, is the average grade of the i block, REC, is the
recovery from the i” block, MC, is the mining cost of the i""

block, and PC, is the processing cost of the i’ block.

If the total cost of production, handling, and processing
exceeds overall selling price, mining such deposits would be
non-economical and hence BEVs of such block is negative
else positive values are assigned to the blocks. BEVs of
discretized block is determined and is represented in Fig.3.

There are a variety of algorithms available for open pit
optimization based on linear programming and graph theory
(Hao and Orlin, 1992; Hochbaum, 2001; Picard, 1976). In this
paper, graph theory based minimum-cut or maximum-flow
algorithm is used to optimize the pit shape. In optimizing
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Fig.4 Optimum pit limits superimposed on the block model (Lerchs-Grossmann, 1965;

Hustrulid and Kutcha, 1995)
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opencast mining operation with the minimum cut algorithm,
each 3D block is represented as a node, the slope
requirements, and other operational constraints are
represented by precedence relationship given by a set of arcs
A in the graph G. In such cases, the pit design problem can
be represented using a directed graph, G = (V, 4), where
gives the set of nodes and 4 the set of arcs (Hao and Orlin,
1992; Hochbaum, 2001; Hochbaum, 2008; Padberg and
Rinaldi, 1990; Dinic, 1970; Goldberg and Tarjan, 1988; Picard,
1976).

In order to optimize the production and profit, a set of
nodes are so chosen in the graph which provides maximum
profit such that all the successor nodes are also included in
the set. A set of such blocks based on their BEVs and
obeying operational constraints are shown in Fig.4, which
gives the maximum number of blocks which can be mined
profitably. Such optimized set is the maximum closure of the
graph (Ford and Fulkerson, 1956; Ford and Fulkerson, 1957,
Dinic, 1970; Goldberg and Tarjan, 1988; Picard, 1976) and is
called as the ultimate pit limit design.

2.1 ULTIMATE PIT LIMITS USING MINIMUM CUT ALGORITHM

Maximum closure problems can be reduced to minimum
cut problems by applying efficient maximum flow algorithms
to calculate the values (Picard, 1976). As stated above, the
positive-valued blocks represent ore blocks, whereas
negative-valued blocks represent waste blocks. The ultimate
pit limit problem can thus be formulated as given in eqns. (3
and 4):

Maximize P = ZWj* x; .3
Subject to: X=X > 0; V(i, j) €A. and X; €[0,j/1] .4

Where, x; is the binary variable with value 1, if it is present
within the ultimate pit and 0, if it is present outside the
ultimate pit. w, is the economic value of the j block, and x; is
the block that need to be mined to get access to the block x;.
This optimization formulation (equations 3 and 4) can be
solved using the graph cut method.

The orebody model can be represented as a directed
graph. Each mining block is considered as a node of the
directed graph. There are two special nodes: a source (s) and
a sink (t). The source node is connected to all nodes
designated as ore blocks in the model. The capacities of those
arcs are the blocks’ economic values of the respective block.
On the other hand, all nodes designated as waste blocks in
the model are connected to the sink node. The capacities of
those arcs are the absolute value of the waste blocks’
economic values.

To mine a given block x(i, j) one needs to access that
particular block. Unless, the overlying blocks are extracted, it
is impossible to access that particular block and mine it.This
may be achieved by maintaining slope constraints. Slope
constraints are obeyed by identifying the overlying blocks
that need to be extracted before extracting the target block.
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The safe working conditions with stable slope angle is
incorporated for design of optimal pit (Dagdelen and
Johnson, 1986; Dowd and Onur, 1992; Hustrulid and Kutcha,
1995; Johnson, 1968; Jordi and Currin, 1979; Mathieson, 1982;
Ramazan and Dagdelen, 1998; Ramazan et al., 2005; Sevim
and Lei, 1998; Whittle, 1990; Zhang et al., 1986). Fig.5 presents
the number of blocks which need to be mined before the ore
can be mined for 45° slope angle in 3 dimensions.

Ore

Fig.5a 3-D representation of 1-5
pattern (Laurent et al., 1977)

Fig.5b Directed graph
representation of 1-5 pattern
(Laurent et al., 1977)

For orthogonal set of blocks, two geometries of
approximating an open-pit is considered.These are, (a) the 1-
5 pattern, where 5 blocks are removed to gain access to the
ore block (a level below), and (b) 1-9 pattern, where 9 blocks
are removed to gain access to the ore block (present a level
below) as per the Lerchs-Grossmann (1965), 3D algorithm. The
1-5 pattern has been used in this paper as shown in Fig. 5a.
In order to extract the ore block (one layer below) in Fig. Sa,
five (5), waste blocks (numbered 1, 2, 3, 4 and 5) on upper
layer needs to be removed to maintain slope angle of 450 in 3
dimensions. For representing the situation in 3D algorithm,
directed graph with slope constraints are created as shown
in Fig.5b. The arcs from the ore block to all the overlying
blocks (5 in number) are created. The capacities of the slope
constraint arcs are assigned an infinite value. The infinite
value of slope constraint arcs ensures that these arcs will
never be the minimum cut. Thus, the minimum cut will provide
a valid pit because the slope constraint will not be violated.

2.2 PUSHBACK DESIGN

The pushback design proposed in this paper is a two
stage process. In the first stage, the parametric minimum-cut
algorithm has been used, and in the second stage, repair
heuristic algorithm has been applied to generate a feasible
solution for pushback design. The pushbacks or sequences
are designed keeping in mind the ultimate pit design, which
is obtained from analysis of BEVs of each block. Operating
design on developing pushback includes information on
bench width, road width, slope angle, overall operating slope,
bench heights, etc. (Shishvan and Sattarvand, 2015). The
pushbacks are highly motivated by maximizing the NPV and
to provide stable cash flow.

2.2.1 Parametric minimum-cut algorithm

The minimum-cut network flow algorithm, same as Lerchs-
Grossmann algorithm (Lerchs-Grossmann, 1965), generates a
single pit which is the optimal ultimate pit for the surface mine.
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To generate pushbacks, parameterization of the minimum cut
algorithm can be implemented. The parameterization algorithm
of the Lerchs-Grossmann algorithm is well documented in
various literature (e.g. Seymour, 1995) and is used in
commercial implementations (Whittle, 1998). By scaling the
economic values for all blocks using a Lagrangian multiplier
parameter A, a series of “nested” pits were generated. The
value of A is monotonically non-decreasing and used to
directly multiply the block economic value. The increasing A
values will generate pit from small to large pit size until the
ultimate pit limit is reached. In this paper, A was chosen to be
multiplied with the capacity of the arcs from source to the ore
blocks nodes. The arcs from waste blocks nodes to sink are
kept as-it-is since the objective is to scale the economic value
of the ore blocks.

It is clear that the parameter A, a multiplier of the capacity
of the arcs in the network algorithm, plays a key role in
producing nested pits or pushbacks. However, selecting a
series of A values for nested pits generation is a tedious
undertaking and at the same time, it will not respect the
production constraints. The arbitrary choice of A may
produce pushbacks with large gaps, which is undesirable from
mining standpoint. In this paper, an iterative algorithm has
been applied for selection of the suitable value of A. By
selecting the parameter value, different size pits or pushbacks
can be generated depending on the resource constraints. The
algorithm starts with a small Lagrangian parameter (A) value
to calculate the minimum cut of the directed graph. The
increasing Lagrangian parameter produces larger and larger
size pits or pushbacks. The A value was incremented with AA
until the production target constraint is violated. The choice
of initial A and increment value AA have a great effect in this
algorithm.

2.2.2 Repair heuristic algorithm

The good choice of the Lagrangian relaxation produces a
decent upper bound for the pushback design, however, it will
not guarantee exact feasible solution with production
constraints. The heuristic algorithm has been applied to
obtain the feasible solution for the pushback design problem
which constrained the production target. In this paper, the
production target constraint has only been considered.
However, any constraint, as well as multiple numbers of
constraints, can be incorporated in this algorithm.

To obtain the feasible solution, some nodes need to be
eliminated to obtain a new pushback that satisfies the
production constraints. Nodes are selected for elimination in
such a manner that the value of the minimum cut decreases
as little as possible and at the same time the amount of
violation of production constraint is reduced as much as
possible. Apart from that, the eliminated node from the current
pushback should be selected in such a manner that none of
its predecessors in the directed graph belong to the current
pushback. After selecting the set of candidates for the
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elimination by respecting the predecessor constraints, the
best node has to be selected from the candidate set.

The heuristic algorithm iteration was done in a loop until
the feasible solution of the present pushback is reached. At
each stage in the loop, the heuristic algorithm sorted the
elements of the candidate set according to the selection
criterion and eliminated the best candidate. Then, violation
of the production constraint is re-calculated. If the violation
of the production constraint is less than or equal to zero, the
algorithm stops otherwise run in the loop until it reaches the
feasible solution.

3.0 Optimization algorithms

The Lerchs-Grossman algorithm used in this paper assumes
that the BEVs of each block is known (using eqns. 1 and 2),
which is calculated as a result of the concentration of ores
and impurities in each block. The algorithm decides the
number of blocks present in the ultimate pit and the
sequence in which they will be extracted (Lerchs-Grossmann,
1965). The algorithm further optimizes the overall profit from
the pit by maximizing the cost difference between the value
of ore extracted, extraction cost of ore, as well as extraction
cost of waste required to extract those ore blocks (Hustrulid
and Kutcha, 1995). In this, the slope constraints are applied
such that the wall slope should not increase beyond the
maximum slope angle varying with the depth of the pit. This
algorithm works by manipulating the BEVs and arcs. In
optimization packages, the slope requirements are translated
into a large number of block relationship in the form of arcs
(Soigolo, 2010). During the optimization process, the
algorithm marks the block which is to be mined and these
marks can be considered or left depending on optimization.
The block remains marked if it currently belongs to the linked
group of a block having a total positive value. Optimization
deals with the problems of minimizing or maximizing a
function with different variables having equality or
inequality constraint conditions. Many design problems are
very complex and difficult to solve using conventional
optimization techniques.

3.1 PRODUCTION PLANNING

The mine planning is based on divide and conquers rule.
In this, the entire reserve/deposit is discretized into blocks of
equal size. In order to optimize the production, the blocks are
sequenced in different time dependent pushbacks or
sequences. Once the optimized pit layout is available, these
smaller size pits are comparatively easier to manage. The
production starts from the area which gives fast and maximum
ROJ, i.e., area with the minimum stripping ratio. Successive
sequences are made progressively depending on ROI
contributed by them ultimately reaching the ultimate pit shape
(Mathieson, 1982). The extraction continues from a sequence
having highest average profit ratio (APR) to lowest profit ratio
and the relation given in eqn. (5).
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Average profit ratio = Revenue/all costs incurred ...(5)

Operating layout of the mine is the key element in
production planning. The operating layout is developed
keeping in mind slope angle of the pit and various operational
constraints of mine design. The push backs or sequences are
so organized as to meet the long-term production plan
(Hochbaum and Chen, 2000; Johnson, 1968; Wilke and Reimer,
1977). 1t provides an estimate of the rate of advancements of
mining operations. The overall objective is to meet the long-
term production target of the entire mine, which is segregated
into several medium term plans and further divided into short
term plans. The long-term planning aims at ensuring a steady
state of production, maximizing the NPV and total profit from
production process while satisfying operational constraints
of working slope angle, processing constraints, grade
blending and ore production (Frimpong et al., 1998). This acts
as a guide for the medium-term and short-term planning.
These medium and short term plans are an indicator of overall
achievement of target and can be accordingly modified to
meet the overall target based on the situation volatility.

4.0 Case-study of iron ore mine

The study was carried out on a hill top narrow strip deposit
of iron ore. Iron ore are formed by the secondary process of
leaching and enrichment of iron-bearing rocks under certain
structural and meteorological controls (Wilke and Reimer,
1977). The ore produced comprises varying physical, textural
and chemical compositions. The ore so formed gets deposited
in varying spread and thickness over several prominent hills
generally following strikes of country rocks. The orebody
considered is bounded by banded hematite jasper (BHJ) on
one side and iron floats and talus on the other giving it a
lenticular shape. Ore is generally harder at top and softer at
depths. The irregularly laterized harderore forms the crest of
the orebody as shown in Fig.6, which have been used in
present case-study. The Fig.6 also shows various surface
features, mine leasehold boundary surrounding the ore
deposits. There are three sections in which the entire deposit

Boundary

Fig.6 Surface plan showing the lenticular ore deposit, surface
properties, ore boundary and mine lease boundary along with the
area modeled using surpac.
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have been divided in order to optimize production from each
area. The area C (shown in circle) have been considered for
the modelling and analysis purposes in this paper.

A geological database is created from the available 222
boreholes information in the beginning to determine the extent
of the ore deposit and other geostatistical parameters in the
concerned area. A geological database based on the borehole
information of the concerned area has been modelled to show
the extent of deposit. The Fig.7 shows the presence of
various borehole in a concerned area with respect to the
collar value (i.e., surface coordinates) and survey file
information. The borehole in the entire area is sectioned at
regular intervals (here 100m) and are digitized to form ore
strings. The ore strings are gradually concatenated to cover
the entire deposit. The ore strings so formed, are oriented in
a clockwise direction and subsequently triangulated to form
a solid model of the deposit. The object after triangulation is
validated for the presence of edges, triangles, etc. Once
validation is done, the objects are set to solid. The solid
model thus obtained is shown in Fig.8. The deposit is
modelled depending on different assay values i.e., iron
content present in the borehole section.

The volume of the reserve is estimated from the solid
model so formed. The reserve in the deposit is calculated
using ordinary kriging method (Goovearts 1997). Directional
variograms are drawn to determine the direction of anisotropy
of the deposit (Remy, 2004). The variogram in the current
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study has been drawn at 0°, 45°, 90°, 135° and -90°
(vertically below). These variogramshelp in determining major,
semi-major and minor axes for carrying out ordinary kriging
in order to determine the reserve (Gemcom, 2010). The data
obtained by compositing borehole information at Sm intervals,
different variograms for 0°, 45°, 90°, 135°, and —90° (vertically
below) were obtained as shown in Figs.9(a-e). This kriging
file is generated with bearing 0, dip 0, plunge 0, semi-major
axis 0, ratio major/semi-major 2.23, and major/minor 7.27,
search radius 450, range 376 in x-direction and search radius
75, and range 51 in vertical direction respectively.
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The solid model is fitted into block model of regular size
to generate constraint block model. The solid model so
generated is incorporated in the block model of the regular
shape of 50m x 50m x 10m size to form constraint block model
(Fig.10). In the constraint block model, extra blocks falling
outside the ore deposit are removed for better estimation of
deposit using ordinary kriging.The data so generated upon
ordinary kriging of the constraint block model resulted in
25900 blocks with ablock size of 50m x 50m x 10m size to be
present within the deposits.

The block economic values of each block (BEV)) are then
calculated using ordinary kriging method, taking all pertinent

g

Fig.10 Estimated block model developed from ordinary kriging
showing the variation in the deposit
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TABLE 1: ECONOMIC PARAMETERS

Iron price (US$/MT) 160.67
Selling cost (US$/tonne) 3.36
Mining cost ($/tonne) 0.6
Processing cost ($/tonne) 6
Processing recovery 0.9

parameters into consideration as mentioned in equation (2).
The market economic parameters considered for BEV
determination are given in Table 1. After calculating BEV, net
revenue is calculated using eqn. (1). The data so obtained is
then used as input parameter for optimization algorithm (here,
Lerchs-Grossmann algorithm). The optimization algorithm for
design of ultimate pit limit is then formulated using constraint
conditions as depicted in eqns. (3-4), as well as other
economic and slope constraints. These optimization
algorithms so formed are allowed to iterate in software like
Matlab (Mathworks, 2011) to sequence blocks present in
ultimate pit design. Further geostatistical analysis of result has
been carried out using SGeMS software (Remy, 2004).

4.1 ULTIMATE P1T GENERATION

In order to generate the ultimate pit, the directed graphs
are constructed using the block economic value of orebody
models. The block economic value is calculated in this paper
as an undiscounted value. The discounting of the block
economic value during ultimate pit limit generation can also
be implemented in an indirect way and is beyond the scope
of the present study. The simulation is performed within the
mineralized zone; in order to generate a smooth topography,
some waste blocks are introduced in the non-mineralized zone
to form a regular 3D orebody model. A directed graph is
constructed, where ore blocks are connected with the source
node and waste blocks are connected to the sink node, as
described in Section 2.1. To maintain slope constraints, an
infinite capacity arc is formed for underlying blocks to
overlying blocks. The slope angle of the study mine is 45°,
thus infinite capacity arcs are directed from an underlying
block to nine overlying neighbour blocks. A high positive
number is chosen to maintain the infinite arc capacities (here,
9999). After generating the graph, the push re-label maximum
flow algorithm is used to generate the ultimate pit. The Fig.10
shows two sections of the ultimate pit generated using
described method. The minimum cut algorithm returned 23563

blocks which were present in the ultimate pit layout. The
stripping ratio (SR) was calculated considering the cut-off
value of ???, and the value is ??.

Can you add some discussion about the ultimate pit
results.

4.2 PUSHBACK DESIGN

To generate a series of nested pits, parameterization of the
minimum cut algorithm was performed. The pushbacks were
generated by scaling the economic value of the ore blocks
using the A parameter, and applying heuristic algorithm as
described in Section 2. In this study, the number of
pushbacks was selected based on the mining equipment
capacity. The mine is operated with shovel and dumper
combination, and the total amount of materials the shovel
dumper combination can handle is ?? MT. It was observed
from the results that proposed study generates 6 pushbacks
after satisfying the mining constraints. The figure presents
two sections of pushback sequences for the mine under
consideration.

The stripping ratios of six pushbacks are calculated and
presented in Fig.11. It is observed from the Table 2, that the
stripping ratio is low in the earlier pushbacks, which ensures
that the generated pushbacks need fewer amounts of waste
extraction in the earlier periods of mine production. It is also
observed from the Fig.12 that after the fourth pushback, there
is a paradigm shift in the revenue. This gives rise to
suspicions that the mine may not be profitable to extract after
the fourth pushback since the stripping ratio is almost
doubled thereafter. This may be caused by the fact that the
model presented in this paper is based on an undiscounted
block economic value, thus the time value of mine is not
considered.

h._

Fig.11 Vertical section of the pit layout

TABLE 2: REVENUE FROM DIFFERENT PUSHBACKS

Year Total ore Waste Ore - Waste DCF (Million $) Cumulative DCF
(Million $)
1 161424335 0 161424335 146.7493955 146.7493955
2 163769168 0 163769168 135.3464198 282.0958153
3 128729753 12441 128717312 96.70722164 378.8030369
4 349304690 89661 349215029 238.5185636 617.3216005
5 224309127 58344 224250783 139.2420929 756.5636934
6 32792581 234663 32557918 18.37809593 774.9417894
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Graph showing revenue from the mine
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Fig.12 The discounted cash flow obtained for 6 years

4.3 PRODUCTION SCHEDULING

To calculate the discounted cash flows and total NPV for
the case study, a year-wise mine production scheduling needs
to be assessed. The technical parameters presented in Table
1 were used for the purpose of production scheduling.

Production scheduling was then done to determine yearly
production target and time-dependent push backs or
sequences (Hochbaum and Chen, 2000; Johnson, 1968; Wilke
and Reimer, 1977). The values so obtained was plotted using
SGeMS and time-dependent pushbacks were obtained as
shown in Fig. 11 (Agrawal, 2012). The deep blue colour
shows the pit shape after the first year, while cyan colour
shows the shape during the second year and so on and so
forth. The gray colour shown at the bottom right-hand side
shows the waste blocks which are outside the ultimate pit limit
design and hence will not be mined.

5.0 Conclusion

Owing to the flexibility and compatibility offered by Surpac
in using the data obtained from Surpac in different software,
an in-depth analysis of BEV and other operational constraints
in opencast mining can be easily done. The optimized blocks
present in the pit can be easily modelled and used as a rough
and ready yardstick in planning the long, medium as well as
short term pushbacks. This study finds relevance to the top
management people in keeping track of the overall objective
of steady production and cash flow in a hassle free manner
while optimizing the extraction from the area.
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