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Non-linear dynamic support optimization
method for non-uniform pressure circular
tunnel considering the effect of damage

Based on non-linear Hoek-Brown criterion, a new
approximate solution of deformation and plastic zone radius
of circular tunnel is deduced under non-uniform pressure.
In the plastic region, three different, Young'’s modulus
attenuation models are applied to solve the plastic zone
deformation. The results show that the lateral pressure
coefficient (LPC), dilatancy coefficient, buried depth and
Young's modulus attenuation exert important effects on the
surrounding rock state. Under the influence of LPC, the
radius and displacement of plastic zone show non-uniform
variation; then, the maximum value of the ground response
curve is gradually shifted from the side to the roof. With the
burial depth and dilatancy coefficient increase, the surface
displacement  presents the non-linear increase
characteristic. Besides, the influence of Young's modulus on
the plastic zone deformation is not only related to its
attenuation model, but also closely related to the surface
location and LPC of surrounding rock. Based on the above
research, a non-linear dynamic support optimization
method for non-uniform pressure circular tunnel is proposed.

Keywords: Elastoplastic solution; circular tunnel; non-
linear Hoek-Brown criterion; lateral pressure coefficient;
ground response curve

1. Introduction

Ithough the plane strain problem of circular holes is

relatively simple problem, it can provide effective

theoretical bases for the optimization of tunnel
section shape, support design and stability evaluation of
surrounding rock in underground engineering. Therefore,
plane strain problems have been widely applied in the tunnel
excavation, shaft construction, oil extraction, coal gas
penetration and other projects.

The elastic solution of a cylindrical cavity excavated in
biaxial in situ stress fields was put forward as early as 1898
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by Kirsch. However, the plastic behaviour of the material was
ignored. Later, R.Fenner firstly proposed a elastoplastic
analytical solution of a circle tunnel under the uniform
pressure. Then, based on the complex variable function
theory or finite element method, Savin, Detournay and Zhou
et al. [1-4] presented the solutions of displacement and plastic
zone radius of a circular tunnel under non-uniform pressure.
What is more, Zhao [5] introduced a simplified stress solution
of elastic zone for weakly consolidated soft rock tunnel under
asymmetry load and the accuracy of the solution was proved
by experimental results and engineering cases. However, the
previous studies have mostly used Mohr-Coulomb criterion.
It may be unreasonable to adopt these criterion for the jointed
and fractured rock masses because it easily showed obvious
non-linear failure characteristics in the process of
compression experiment [6]. The non-linear Hoek-Brown (H-
B) yield criterion for such rock has good applicability [7-8].
In the past twenty years, many scholars have carried out a
great deal of research on the distribution of surrounding rock
state of circular tunnel by means of theoretical analysis and
numerical simulation combined with the H-B yield criterion
under uniform pressure [8-16]. However, due to the difficulty
of solving, the influence of lateral pressure coefficient (LPC)
on the changes of surrounding rock state was rarely
considered under H-B yield criterion. So, in this paper, on the
basis of certain assumptions, a new approximate closed
solution of a circular tunnel excavated in the H-B rock mass
under non-uniform pressure was obtained and the radius and
deformation of the plastic zone was also deduced. Finally, the
accuracy of the solution was also proved by comparing with
the Park’s solution [12].

With the increase of plastic deformation of surrounding
rock, the internal cracks in the rock mass will gradually
expand, and then the mechanical parameters, such as Young’s
modulus, H-B constants, Poisson’s ratio et al, will gradually
decrease. As for Young’s modulus, there are mainly two ways
to define the post-peak attenuation process. First, the
Young’s modulus could be determined by confining pressure
and the minimum principal stress, which is named pressure-
dependent Young’s modulus (PDM) model [17-20]; Secondly,
the Young’s modulus attenuation model is a function
associated with the plastic zone radius, that is, radius-

403



dependent Young’s modulus (RDM) model [21-24]. In order
to reflect the influence of Young’s modulus attenuation on
the surrounding rock state, the RDM model would be cited
by this paper. Based on RDM model, three different Young’s
modulus attenuation models will be proposed to study the
effect of Young’s modulus on surrounding rock deformation.

Based on non-lincar H-B criterion and certain
assumptions, a new approximate closed solution of stress,
deformation and plastic zone radius of surrounding rock in
circular tunnel was deduced under non-uniform pressure.
Meanwhile, by comparing with the Park’s solution [12], the
correctness of this paper is verified. And then, the effects of
the LPC, the dilatancy coefficient, buried depth, Young’s
modulus attenuation and rock quality grade on the
surrounding rock state are systematically studied. Finally, a
non-linear dynamic support method for non-uniform pressure
circular tunnel is proposed, which provides references for
similar engineering problems.

2. Definition of the problem

As shown in Fig.1, a circular tunnel with inner radius « is
excavated in a uniform, isotropic and continuous H-B rock
mass. The initial vertical stress and horizontal stress at the
infinite boundary are respectively o, and A5, where A is the
lateral pressure coefficient (LPC). The inner radius a of the
circular tunnel is subject to a pressure p, . As the pressure
p;, gradually decreases, the surrounding rock deformation
gradually converges, and the stress state of the surrounding
rock is also gradually redistributed. In the initial excavation
period, the surrounding rock is in the elastic state. When the
maximum and minimum principal stresses satisfy the non-
linear H-B yield criterion, the stress-strain curve show
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obvious stress drop characteristics and then the plastic zone
develops. Eventually, the surrounding rock would achieve a
stress equilibrium state with the plastic zone radius RP under
the effect of the pressure p, . Meanwhile, the rock mass
mechanical parameters, such as Young’s modulus, H-B
constants, Poisson’s ratio et al, will also gradually decrease
and then reach the residual value.

In this paper, the non-linear H-B criterion as the rock mass
yield condition can be expressed as [8,10-13,15]:

0, =0, +\m,0. 0, +50," (D)

Where o, and o, represent respectively the maximum
principal stress and the minimum principal stress; o,
represents the initial uniaxial compressive strength;
parameters m, and s represent the rock material constants
determined by H-B criterion.

For the plane strain problem, when the support pressure
meets the conditions p, << [, Ao ], ..., the radial stress (o,)
and tangential stress(cy) in generally are the minimum
principal stress and the maximum principal stress respectively
[5]. Therefore, Equation (1) can be expressed as:

G,=0 + \/ m,o" " &, + 5o for intact rock mass (2a)

C

C,=0, + / m, oo, +s, o’ for residual rock mass  (2b)

Where o ” ek represents the initial uniaxial compressive
strength of rock mass; crch represents the residual
compressive strength; m, and s, represent the H-B rock mass
residual constants. o, = 2¢ cos ¢/(1-sing), o, % = 2¢ cos
@, /(1-sing) . ¢ and c, represent the initial and residual

cohesion respectively, ¢ and ¢ represent the initial and
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Fig.1 Mechanical model of a deep circular tunnel.
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residual internal friction angles of rock mass.

When the surrounding rock enters the plastic zone, its
mechanical behaviour is closely related to the rock damage
degree. The higher the rock is damaged, the greater the
deformation becomes. Generally, the Young’s modulus
attenuation could be used to indicate the damage degree of
surrounding rock. In this paper, based on the radius-
dependent Young’s modulus (RDM) model, three different
Young’s modulus attenuation model will be proposed to
calculate the deformation of plastic zone.

* Case 1: Assume the Young’s modulus of plastic zone
equals to the initial value £, which means neglecting the
influence of Young’s modulus attenuation on the state of
surrounding rock. So, it can be expressed as:

En=E ..(3)

Where E(r) represents the Young’s modulus of plastic
zone; E represents the initial rock mass Young’s modulus.

* Case 2: Young’s modulus along with the radius direction
of plastic zone presents the power function attenuation
characteristics. Considering the continuity condition of the
Young’s modulus attenuation, £(r), _ r=Es E(r),_,=E,, then
the Young’s modulus at any point of plastic zone can be
expressed as:

E(r)=E (rla)* - (4)

Where a = 10g(E/Er)/log(Rp/a), Er represents residual
Young’s modulus.

* Case 3: Assume the Young’s modulus of plastic zone is
equal to a certain residual value £ , the Young’s modulus of
the plastic zone can be expressed as:

E(r)=E, - (5)

The Eq. (4) shows that the Young’s modulus attenuation
is not only related to the initial and residual value, but also
closely related to the radius of plastic zone. Compared to the
solution presented by Zhang and Ewy [23, 24], the solution
of this paper is obtained under non-uniform pressure.
Therefore, the radius (Rp) of plastic zone is constantly
changing around the surrounding rock, and then the Young’s
modulus attenuation degree is also different, which exerts an
important influence on the plastic zone displacement and
support scheme design.

3. Closed solutions of circular tunnels
3.1 BASIC EQUATION

Considering the assumptions condition, the equilibrium
equations of plastic zone for the plane strain problem can be
written as:

do, /dr + (o,~cp)/r =0 ... (6)

The geometric equation of this problem can be denoted as:
du u

£, :;;Sﬁ; Z: (D
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Where ¢, and g, respectively represent the radial strain
and tangential strain; u represents the radial displacement of
surrounding rock. Based on the small deformation
assumption, the elastic strain part of plastic zone satisfies
Hoek’s law as:

|
5, =—L11-v)(0, ~0)) ~¥(3, ~0,)]

l+v - (8)
gy =——[(-v)(o, ~0,)~v(0, ~07,)]
: E
where, v represents initial poisson ratio.
3.2 STRESS AND DEFORMATION SOLUTION OF ELASTIC ZONE

Based on the elasticity theory and Kirsch’s solution [25],
the approximate stress expression of elastic zone under non-
uniform pressure can be obtained as Eq.(9a). The result is
similar to Zhao’s solution [5].

4

- Rz Rz _2 R:
J =M(1__{)+p D m(l_@”;}mgg
‘ 2 e b e »
1+0)6, R’ R (1-Mo R (9a)
g&;( ;) o“+_f11)_1_,‘_++(%(1+3%,c0529
¥ r F

Where, p is the radial contact stress at the interface
between elastic and plastic zone. When 4 = 1, Eq.(9a) will be
transformed into the stress expression under uniform
pressure which is the same as Park’s solution [11]. In other
words, Park’s solution is only a special case of this paper.
o,=0,~(0,~p,) r‘;

R’ ... (9b)

r
2

Og =0, +(Jn - PT}
-
Substituting Egs.(7) and (9a) into Eq.(8), the displacement
expression of elastic zone can be obtained by considering
stress instantaneous release.
- 1+ A)c
= M{(l— Ava, +[%_ 2(1- 1)

".I'H

R’ , 3120, R_j,} . (10)

vo,cos20—p |—- n
T 2 r

When r = R , the displacement expression at the interface
between elastic and plastic zone can be deduced:

1 R A
Up = (4—%{(1- Ao, + [m‘ 2(1-4)
_ . (11
Vo, 0260 —p ]+ % .

At the elastoplastic contact surface, the surrounding rock
is in the critical yield state, so the tangential and radial
stresses meet the non-linear H-B yield criterion at the peak
point. Substituting Eqs (9a) into Eq (2a), the radial contact
stress p,, under non-uniform pressure firstly can be obtained:

405



Py = 5{4[(1 + )6, +2(1- A)6, cos 20]+m,5."")

(12)

—%\/{8[(1+ Doy +2(1- Do, cos 20+ mo N mo P4 +16 50 72

When A=1, the radial contact stress under uniform
pressure can be obtained:

Pa=0,+ %mbaf —é\/ﬂéco +myo ol +1655/ (13)

Compared to Eq (13), Eq (12) is obtained under the non-
uniform pressure. So, the radial contact stress (py) changes
with the rotation angle (6), which shows that the critical
supporting resistance at each point of the tunnel surface is
different. And this phenomenon has important influences on
the range of plastic zone, deformation and the design of the
supporting structure.

3.3 STRESS AND DEFORMATION OF THE PLASTIC SONE
3.3.1 Stress and radius solution of the plastic zone

Based on the assumption conditions, the stress of plastic
zone should satisfy the post-peak H-B yield criterion and
equilibrium equations. Therefore, substituting Eq.(2b) in to
Eq.(6), the stress of plastic zone can be obtained by
considering boundary condition o, = P;, at r=a.

r 2 b
O’rp = Hl ln(;) + HZ In* (;} + P

r LT .. (14)
O, =(H, + 2H1)ln(;}+ H,In (;)+H, + P,
R R2\1./2 ”-'i,,O'i
where 1, =(m, 0, p, +5,0,7) " Hy ===

From Egs.(9a) and (9b),the radius of plastic zone should
be firstly determined in order to obtain the stress closed
analytical solution of surrounding rock. Considering the
stress boundary conditions (crrp)r: Rp = Py at r=Rp, the radius
of plastic zone under non-uniform pressure can be deduced
by combining Eqgs.(12) and (14):

~H, +\|(H,)" =4H,(p,, - p,))
1, ..(15)

R, =aexp

When A=1, the radius of plastic zone under uniform
pressure is obtained by combining Eqs.(13) and (14):

—H,+ () =4H,(p, —p,.)
R, =aexp
’ 2H

.. (16)

2

3.3.2 Displacement solution of plastic zone

If the tangential strain and radial strain in plastic zone are
composed of elastic strain and plastic strain, the total strain
can be expressed as:

— of P
£, =& +&

. (17)

S P
E4p =4 TE,
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Where, ¢? and ¢4 represent the radial strain and
tangential strain in plastic zone respectively.

In general, the deformation of rock materials in plastic
zone satisfying the non-associated flow law can be
determined by the M-C plastic potential function which can
be expressed as follows:

flog, 0,) = g9 B,0, .. (18)

Where, B, = (1+siny) (1-siny), y represent dilatancy
angle of rock mass.

According to the plastic potential theory, the plastic
tangential strain ¢, and radial strain ¢? can be expressed as:
.

P _

Ey, = A

i F ! r P A
oo, oo,

.. (19)

Where /lp represent the parameters relevant to the plastic
strain.

Substituting Eq.(18) in to Eq.(19), the relationship between
plastic tangential strain and radial strain can be obtained:

&+ Bl =0 . (20)

Substituting Egs. (7) and (20) in to Eq. (17), the differential
equation of radial displacement in plastic zone can be
obtained:

du u
—= 4 f =)
dr r
Where, ir) = ¢+ B, &, Solving Eq (21) and considering
displacement continuous condition

(2D

(u,,p),:Rp = up, at r=R, the radial displacement in

plastic zone can be deduced:

| o N Rp A
ty =~ IR_,, S dr g, (=)

- (22)

Eq. (22) shows that the displacement is closely related to
the expression of elastic strain in plastic zone. The elastic
strain in plastic zone satisfies the generalized Hook’s law.
Considering the attenuation of Young’s modulus, the elastic
strain in plastic zone at any point should satisfy the following
equation.

. v
86 = Ej (r) [(l - vr}(dep —_ 60)— ]:r(grp _ O-“)]
& = ;r(‘:) [A=v, )0, —0,) =V, (04, —0))] - (23)

Where, “E/(r)” represents different models of the Young’s
modulus attenuation respectively, such as Case 1, Case 2 and
Case 3. Substituting Eq. (23) in to function f{r), the specific
expressions of the function f{r) can be obtained:
l+v,

50 [(A=v, =v,B)0, +(f,-Vv,p,

—V,)0,, +@v, =11+ )7,

Sf(r)=
. (24)
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Substituting Eq. (14) in to Eq. (24), the function f{) can
be obtained under the non-uniform pressure:

l+v 2 F . r .
) = Z[8, In" (=) + &, In(—) + &
J(r) Ef(r}[«1 (a) %, (a} o] .. (25)
where, & =(+8)1-2v)H, 6, =(1+B)1-2v )H +2B -v 5 -v)H,,
0, =(1+ B X1-2v. X(p, —0y)+(B, -, B, —v,)H,.
For Case 1, substituting Eqgs.(3) and (25) into Eq.(22), the
displacement of plastic zone without considering Young’s
modulus attenuation can be deduced:

up = o [6./,(1)+8,1,(r) +6,/,(r) =6, [,(R,)
. i .. (26)
~8,/2(R,) =3, f;(R,)+2Gu, R |

where, G = E/[2(1 +v)],

1+,

r
.f;(’)_l_‘_ﬁr[n( )_"'—ﬁr (ar) W
.r‘“ﬁ' r 1+|.'jr
filr)= l+ﬁr[m(;)_l+ﬂ] L) = A

For Case 2, substituting Eqgs.(4) and (25) into Eq.(22), the
displacement of plastic zone can be obtained by considering
Young’s modulus power function attenuation.

o

“::w = 2&7[61.){; (M +0,1,(r)+8,/3(r) =9, /, (RP)
: : i @7
-0,/ (Rp )=0./; (Rp )+ ZGrHRP a” Rpﬁl 1

\ rl-ﬁ- 2, 2
In*(—)- In(—
where, JAGE s [ ( ) B llca)+(l+ﬂ,—0!}:]’

140, -a ’_1— B—a

= i i) - +ﬁ T v
40r
-+ Analytical results,( =3.0)
3.5T : _
2 v Park's 1csu]ts[12]7(|3r 3.0)
1 2 Analytical results.(p =1.0)
3.0 e Park’s results[12),(8 =1.0)

1.
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Fig.2 The comparison of this paper’s solution with the Park’s solution. (parameter values: A=1,

For Case 3, the displacement expression form of plastic
zone is same as the Eq.(26). Substituting Eq. (5) and (25) into
Eq.(22), the displacement of plastic zone can be obtained as
well when the parameter G in the Eq. (26) is transformed into
G,. Where G, = E, /[2(1 + v)].

4. Example analysis

4.1 COMPARATIVE ANALYSIS OF EXAMPLES

Compared to the traditional closed-form solution, this
paper considers the influence of the LPC on the change of
the surrounding rock state under non-linear H-B criterion.
When A=1, the solution will be transformed into the
traditional solution under uniform pressure. In response to
this problem, Park et al. [12] also conducted some studies
without considering the impact of LPC, post-peak Young’s
modulus attenuation, Poisson’s ratio and compressive
strength, which is inconsistent with the actual project. That
is, when the parameters =1, E=E , v=v,, ¢.** = ¢ K, the
solution of this paper is the same with Park’s solution. In this
case, the radial contact stress p_ and the radius of plastic
zone Rp can be determined by Eq (12) or (13) and Eq (15) or
(16) respectively. In order to verify the accuracy of the results,
the authors compare them with Park’s solution.

The comparison between the solution in this paper and
the Park’s solution is shown in Fig.2. When A =1, v=v, GCP eak
= GCR, this paper’s solution is the same with Park’s solution.
Therefore, Park’s solution is a particular case of this paper. In
other words, the solution of this paper has a wider

applicability.
4.2 PARAMETER ANALYSIS

The range and deformation of plastic zone are the
important basis for evaluating the stability of the surrounding
rock and the reliability of the supporting design. From the Eqs

8r
4 ++ Analytical resn]'rs,([il=3 .0)
(i
v Park's re31|1ls,(ﬁr=3 0)
6l —— Analytical results,(p.=1.0)
e Pakis results(p =1.0)
L 4
< 5
L
o
= 4 -
3 .

1.0 1.2 14 186 18 20

r/a

_ —~ Peak— ~ R ;
v=v, 0,=0, =0, (a) Radial

displacement with hard rock parameters (b) Radial displacement with soft rock parameters.
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TABLE 1 GEOMETRICAL AND PHYSICAL PARAMETERS OF CIRCULAR TUNNEL

Parameters Set 1-(Park[12])
Hard rock Soft rock
Radius of opening, a(m) 4 5
Initial stress, oy,(MPa) 108 30
Internal pressure, p;,(MPa) 0 5
Young’s modulus, E(MPa) 40000 5500
Poisson’s ratio, v 0.2 0.25
Shear modulus, G(MPa) 16667 2200
H-B
my, 7.5 1.7
s 0.1 0.0039
mpy, 1.0 1.0
s, 0.01 0
o.(MPa) 300 30

(9a), (15), (26) and (27), the state of surrounding rock is not
only related to the parameters of the surrounding rock, but
also closely related to the LPC. Table 2 shows the parameters
and the H-B constant for the different quality grades rock
mass.

4.2.1 Effects of the LPC on the plastic zone radius

The plastic zone radius Rp and radial contact stress p,
under non-uniform pressure can be respectively calculated by
Egs.(15) and (12). Fig.3 shows the effects of the LPC on the
radius of plastic zone. When A#1, the range of plastic zone
shows the non-uniform change characteristics along its
circumference. With the increasing LPC, the range of the
plastic zone in the side wall decreases gradually, while that in
the roof or floor increases gradually. For example, for the
quality grade-C rock mass, when the A is changed from 0.7 to
1.6, the radius of plastic zone (R /a) decreases from 2.81 to
1.39, whereas the roof increases from 1.05 to 7.03. Besides,
when 0<A<1, the ranges of plastic zone in two side are larger

than those in the roof or floor. When A>1, the results are on
the contrary. The above analysis shows that, when 0<A<I
changes to 4> 1, the key part of the first failure of the tunnel
is gradually transferred from two sides to the roof and floor,
so the support design of the non-uniform pressure tunnel
should take full account of the influence of LPC on the state
of surrounding rock.

4.2.2 Effect of LPC on the surface displacement of
surrounding rock

The surface displacement of the surrounding rock under
non-uniform pressure can be calculated by Eqs (26) or (27).
Fig.4 shows that the LPC has an important effect on the
surface displacement. With the increasing LPC, surface
displacement gradually decreases at two sides of tunnel, while
increases at the roof and floor. For example, when the 4 is
changed from 0.7 to 0.9~1.1, the surface displacement of the
side wall (0°) is reduced by 38mm ~ 79mm, with a decrease
rate of 35.19% ~ 43.89%, while the roof and floor (90°)
displacement increases by 30mm ~ 43mm, with an increasing
rate 35.29% ~ 50.59%. Meanwhile, when 0<A<1, the maximum
surface displacement of the tunnel is located in the side walls,
and vice versa.

As shown in Fig.4 and Table 4, we can conclude that the
change of inner pressure also has important influences on the
deformation of surrounding rock. With the increasing inner
pressure, the surface displacement of the tunnel is reduced
in different degrees. For example, when A= 0.9 and the inner
pressure p, changes from OMPa to 5MPa, the surface
displacement of the side wall (0°), spandrel (45°) and roof (90°)
are reduced by 90mm, 83mm and 75mm respectively, with a
decreasing rate of 63.38%, 64.34% and 65.22%. So, we can
conclude that improving the support pressure can effectively
solve the problem of non-linear large deformation in deep
tunnel.

TABLE 2: PARAMETERS AND H-B CONSTANT OF THE DIFFERENT QUALITY GRADES ROCK MASS

o Feak ok E E, v B,
Quality grades Set2-H-B rock mass constant
s s, my, my, /(MPa) /(MPa) /(GPa) /(GPa)
A Very good[8] 0.062 0.0002 10.2 1.27 150 150 42 10 0.2 1.5
B Average[8] 0.0039 0 2.01 0.34 80 80 9 5 0.25 1.15
C Very poor[8] 0.0004  0.0004 0.657 0.657 20 20 1.4 1.4 0.3 1.0
D Very poor[16] 0.0039  0.0019 1.7 0.85 30 25 5.7 5.7 0.3 1.0
TABLE 3: RADIUS OF PLASTIC ZONE WITH DIFFERENT LPC (Rp/a)
Quality grade-(A) Quality grade -(B) Quality grade -(C) Quality grade -(D)
A
0° 45° 90° 0° 45° 90° 0° 45° 90° 0° 45° 90°
0.7 2.02 1.70 1.41 1.62 1.23 0.00 2.81 1.80 1.05 2.50 1.78 1.19
1.0 1.86 1.86 1.86 1.42 1.42 1.42 2.27 2.27 2.27 2.12 2.12 2.12
1.3 1.70 2.02 2.35 1.23 1.62 2.07 1.80 2.81 4.17 1.78 2.50 3.37
1.6 1.56 2.18 2.91 1.06 1.84 2.90 1.39 3.44 7.03 1.47 2.91 5.04
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4.2.3 Effects of burial depth on the state of surrounding rock

As shown in Fig.5, burial depth has an important effect
on the plastic zone radius and the surface displacement. With
the increasing burial depth, the surface displacement and the
radius of the plastic zone also gradually increase. For example,
for the quality grade-B rock mass, the surface displacement
of the surrounding rock increases by 8mm, and the radius of
the plastic zone increases by 750mm when o, changes from

20MPa to 24MPa. Meanwhile, compared to the better quality
rock mass, the worse quality rock have more sensitive to
buried depth.

4.2.4 Effects of dilatancy coefficient on surface
displacement of surrounding rock

The effect of the dilatancy coefficient on the surface
displacement is shown in Fig.6. The dilatancy coefficient has

(@) (b)
u b Spandorel Spandrel
150 30 150 30D
—— =07 — =07
- 2=1.0 2
& Side | . —A=1.0
180 >0 T »13 480 b 00 —A=13
—*=16 — =16
— Tunnel —— Tunnel
210 330’ 210° 330°
90
(c) (d) 120" RoofA 60
Spandrel Spandrel
150’ 30’ 150 A 30°
—2=0.7 A7 1 N — =07
% Side, , — A10 ] Side | | — 10
180 > 0 —»=13 180 > 0" =——2=13
—=1.6 — =16
— Tunnel v — Tunnel
210° 330° 210’ 330’
.~ Floor .
240 Y 300
270

Fig.3 Effects of the LPC on the plastic zone radius. (a) (Grades-

A rock mass parameters: parameters: parameters: co,=108MPa, a=4m,

P;;=OMPa). (b) (Grades-B rock mass parameters: c,=30MPa, a=5m, p; =5SMPa). (c) (Grades-C rock mass parameters: c,=30MPa, a=5m,

P;,=10MPa). (d) (Grades-D rock mass

parameters: 0,=30MPa, a=5m, p;, =SMPa).

TABLE 4: THE SURFACE DISPLACEMENT OF SURROUNDING ROCK UNDER DIFFERENT LPC (U0/Mm)

Quality grade-A rock mass-(a)

Grades-A rock mass -(b)

A
0° 30° 45° 60° 75° 90° 0° 30° 45° 60° 75° 90°
0.7 0.180 0.156 0.132 0.108 0.091 0.085 0.070 0.059 0.048 0.036 0.028 0.026
0.9 0.142 0.135 0.129 0.122 0.117 0.115 0.052 0.049 0.046 0.043 0.041 0.040
1.0 0.125 0.125 0.125 0.125 0.125 0.125 0.044 0.044 0.044 0.044 0.044 0.044
1.1 0.109 0.115 0.119 0.124 0.127 0.128 0.037 0.039 0.042 0.044 0.045 0.046
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Fig.5 Effect of burial depth on the range and surface displacement of surrounding rock; (parameters: a=5m, p;, =5MPa, 1=1.0)

remarkable effects on the surface displacement of
surrounding rock. With the increasing dilatancy coefficient,
the surface displacement also gradually increases. However,
compared to the better quality rock mass, the dilatancy
coefficient has more significant effects on the inferior rock
mass. For example, when 8 changes from 1.0 tol.4~1.8, the
surface displacement of quality grade-D rock mass increases
by 25mm~58mm, while quality grade-B surface displacement
increases by only Smm~10mm. Therefore, the effects of the
dilatancy coefficient on the state of the surrounding rock
should be taken into full consideration in the process of the
support design, especially the tunnel excavated in the soft
and broken surrounding rock.
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4.2.5 Effect of LPC on the ground-support response curve

The ground response curve under different LPC can be
casily obtained, as shown in Fig.7. The effect of the LPC on
the response curve can be summarized into two aspects as
follows:

* The change characteristic of the ground response curve
is closely related to the surface position of the circular
tunnel. With the increasing LPC, the maximum value
position of the ground response curve is gradually
transferred from the side walls (0°) to the roof (90°), whose
changes are consistent with the influence of the LPC on
the deformation of the surrounding rock.

SEPTEMBER 2019



0.18¢ 1

~—%— Quality grade-B rock mass

0.16 —<4— Quality grade-D rock mass

0.14

0.12

“E‘o 0.1
3
0.08
0.06
0‘02 S S WU S ———
1 1.2 14 16 1.8 2
B

Fig.6 Effect of dilatancy coefficient on surface displacement of
surrounding rock. Parameter values (Quality grade-B and D rock
mass 0,=30MPa, a=5m, p; =5MPa, 1=1.0)

* The optimal support time of the surrounding rock around
the circumference gradually changes with the change of
the LPC. When 0<A<1, the deformation of surrounding
rock under the certain inner pressure pin meets the
following relations: side wall (0°) > the roof (90°). When
A>1, the opposite is true.

Table 5 illustrates the critical inner pressure P, of different
position when the surrounding rock begins to enter plastic
state. When p, < Py it indicates that the surrounding rock
has entered the plastic state, and the ground response curve
can be obtained by the Eq. (26) or (27). When p, > Py the
surrounding rock is still in the elastic state and the ground
response curve can be obtained from Eq.(10). As shown by
the above analysis, the influence of the LPC should be taken

141 7
(@)
—e— °
12 85— 300
— 600
10 — 90°
£ 8
z Support response curve
& 6
Ground response curve
4
2
0 =
0 0.2 0.4 0.6 0.8 1

u /m
o

into full consideration for the design of the primary support
and the reinforced support should be carried out in the key
parts to prevent rock instability.

4.3 EFFECTS OF YOUNG’S MODULUS ON THE STATE OF
SURROUNDING ROCK

4.3.1 Effect of Youngs modulus attenuation on the
deformation of plastic zone

The effect of Young’s modulus attenuation on the
displacement of plastic zone is shown in Fig.8§.

» It can be seen that the radial displacement of plastic zone
is closely related to the selection of the Young’s modulus
attenuation model. Compared to the case 1, case 3 has the
greatest effect on the radius displacement of plastic zone.
Case 2 is the second. For example, when 1=0.7, 6=0°,
compared to Case 1, the surface displacement of Case 2
and Case 3 increases by 9mm and 24mm with an
increasing rate of 13.24% and 35.30% respectively.

* Meanwhile, the influence of Young’s modulus attenuation
on the displacement of plastic zone is closely related to
the LPC. For Case 2 and Case 3, when 0= 60° and A=0.7,
the surface displacement of surrounding rock are 41 mm
and 47 mm respectively. However, when 6= 60° and A=1.1,
the value significantly increases 1.049 times and 1.234
times than A=0.7 respectively.

+ Finally, the influence of Young’s modulus attenuation on
the deformation of the plastic zone is also closely related
to the selection of the spatial location of the surrounding
rock. For example, when A = 1.1 and 6 = 0°, for Case 1,
Case 2 and Case 3, the surface displacement of
surrounding rock are 30mm, 37mm and 49mm respectively.
However, when A=1.1 and 0= 60°, the value significantly
increases 1.133 times, 1.162 times and 1.184 times than
6=0° respectively.
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Fig.7 Effect of LPC on the ground-support response curves. (Grade-D rock mass parameter: cy=30MPa, a=5m), (a): 2=0.8, (b) A=1.1
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TABLE 5: CRITICAL INNER PRESSURE P, AT THE INTERFACE BETWEEN

ELASTIC AND PLASTIC ZONE (/MPa) 4.3.2 Effects of Young's modulus attenuation on ground

response curve.

0° 30° 60° 90°

A The ground and support response curves are shown in
/Side /Spandrel  /Spandrel /Roof Fig.9 in different cases of Young’s modulus attenuation. It
21=0.8 17.875 15.783 11.733 9.789 shows that when the Young’s modulus attenuation is ignored
1=1.1 14.753 15.783 17.875 18.934 (case 1), the deformation of the surrounding rock and support
force will be underestimated; however, when a residual value
TABLE 6: SURFACE DISPLACEMENT OF SURROUNDING ROCK IN DIFFERENT of Young’s modulus is assumed in the plastic zone (case 3),
CASES (u,/m) the deformation of the surrounding rock and support force
LPC angle Casel Cased Case3 will ‘pe overestlrpated. So, The Young’s modull.ls power
function attenuation model (case 2) seems to give more
A=07 0° 0.068 0.077 0.092 reasonable results, and is recommended for design of support
60 0.038 0.041 0.047 parameters and stability analysis of surrounding rock in

A=1.1 0° 0.030 0.037 0.049 circular tunnel.
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5. Optimization support scheme for
the circular tunnel under non-
uniform pressure

Based on the above research, the
state of surrounding rock shows the
non-uniform change characteristic
along its circumference under non-
uniform pressure. When 0<A<1, the
radius and deformation of the plastic
zone show the change characteristics
of the side wall > roof; and when A>1,
the result is on the contrary.
Therefore, when the tunnel is
excavated, the pressure of
surrounding rock acting on the
support bearing structure are not the
same along the circumference. And
then it is easy to cause the instability
of the support structure due to local
overload, so the traditional linear and
equal strength support method
cannot fully guarantee the overall
stability of such tunnels, the non-
linear dynamic support theory can
provide an effective way to solve
such problems. The principles of
support design can be concluded in
four parallel as follows [26]:

* Providing reinforced support to
the key parts according to the
fracture and deformation degree of
the surrounding rock. Under the
condition of  non-uniform
pressure, the range and surface
displacement of the plastic zone
show the non-uniform change
characteristics around the tunnel.
Therefore, the deformation and
loosening pressure acting on the
supporting structure are different,

Predicting surrounding

rock looseness range and
Optimize support

Conventional support
methods:bolt-mesh-
cable-shotcrete or bolt-
mesh-cable or shed
support

Analysis surrounding rock
instability characteristics
and determination key
support site

=

-

ional support gL
Grouting hole deeep: side=spandrel=roofi floor);
Bolt(rope) length: side=spandrel=roofi floor):
Key support position: left and nighr side;

v

Schemell: conventional support+flexible/rigid
supporting structureisuch as lining , arch and
laminated shell);

Bolt(rope) length: side=spandrel=roofi floor);

Bolt-surrounding rock
grouting support
and parameters optimization

L
— -

o Grouting hole decep: side=spandrel<roof{floor):

1
support

Bolt(rope) length: side<spandrel<roofi floor):
Key support position: roof and floor;

supporting structure(such as lining , arch and
Jaminated shell);
Bolt{rope) length: side<spandrel=<roofi floor):
Key support position: roof and floor ;

Y

I scheme | + scheme 11 combination

Key support position: left and righr side:
Schemelll: scheme I + scheme 1T

support

G g hole deeep: sid drel=roof{ floor);

Bolt(rope) length: side=spandrel=roofi floor);

Key support position: left and righr side:
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structure and parameters
optimization

—
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Fig.10 Optimization support scheme of deep circular opening under non-uniform pressure

which can easily cause the support structure to be
overloaded and instability. When 0<A<1, the key support
part is in the side wall and when A>1, it is at the roof and
floor.

Grouting reinforcement to improve the residual strength
of fractured rock mass. The worse the quality grade of the
rock mass is, the greater will be the influence of the burial
depth, the dilatancy and the LPC on the surface
displacement. Therefore, the deformation of surrounding
rock can be reduced by grouting reinforcement.
Meanwhile, based on the results of this paper, the
parameters of the grouting will be optimized.

The strength and stiffness of the support structure

JOURNAL OF MINES, METALS & FUELS

should be coordinated with the deformation of the
surrounding rock. And the key parts of the surrounding
rock should be using a flexible support structure to
moderate pressure or providing reinforced support.

Dynamic monitoring of the support effect. Timely and
dynamic monitoring of the stress and deformation of the
surrounding rock can not only provide an important basis
for evaluating the stability and reliability of the
surrounding rock, but also provide practical bases for the
further optimization of the support scheme.

According to the non-linear dynamic support theory,

many support techniques of deep tunnel are put forward
under non-uniform pressure, such as bolt-grouting support,
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bolt-grouting - flexible arch combined support, bolt-mesh-
cable and bolt-grouting combined support. Combined with
the results of this study, the optimized method of the deep
circular tunnel for support design under non-uniform
pressure is summarized as shown in Fig.10.

6. Conclusion

Based on non-linear H-B criterion, a new approximate closed
solution for the stress, deformation and plastic zone radius
of the surrounding rock of the circular tunnel was established
by considering the influence of the LPC and the Young’s
modulus attenuation. In order to reflect the influence of the
damage on the deformation and ground response curve, three
different Young’s modulus attenuation models are considered.
In addition, the influence of the LPC, dilatancy coefficient,
buried depth and Young’s modulus attenuation on the
surrounding rock state is studied systematically. Finally, non-
linear dynamic support design method under non-uniform
pressure is proposed. The following conclusions can be
drawn:

(1) A new approximate closed solution of a circular tunnel
with non-uniform pressure is established by considering the
influence of the dilatancy coefficient and damage. Compared
to the Park’s solution under uniform pressure, the correctness
of this paper is verified.

(2) The LPC has a significant effect on the range and
surface displacement of the plastic zone. With the increasing
LPC, the range and surface displacement of the plastic zone
in the side wall gradually decreases, while that in the roof and
floor increases. Besides, when 0 <A <1, the range and surface
displacement of the plastic zone in the side wall are larger
than those in the roof or floor. When A >1, the results are on
the contrary.

(3) The LPC has an important influence on the ground
response curve. With the increasing LPC, the maximum value
position of the ground response curve is gradually transferred
from the side walls (0°) to the roof (90°), whose changes will
affect the determination of optimal support time as well.

(4) The dilatancy coefficient and burial depth have an
important influence on the deformation of the surrounding
rock, especially more significant for the poor quality grade
rock mass. With the increasing dilatancy coefficient and burial
depth, the surface displacement of surrounding rock gradually
increases, too. Therefore, their effects on deformation of
surrounding rock should be taken a full account of the
support design.

(5) The effect of Young’s modulus attenuation on the
deformation of the plastic zone and ground response curve
are not only related to the selection of the Young’s modulus
attenuation model, but also closely related to the spatial
location and LPC of surrounding rock. Ignoring the continuity
of Young’s modulus attenuation, the deformation of
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surrounding rock is easy to be overestimated or
underestimated. So, the Young’s modulus power function
attenuation seems to give more reasonable results.

(6) A non-linear dynamic support design method of the
circular tunnel under non-uniform pressure is proposed,
which can provide important theoretical bases for similar
engineering support problems.
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