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There are more and more applications of underground
wireless communication in coal mines, such as coal mine
video monitoring systems, coal mine dispatching systems,
and coal mine safety data fusion systems. These coal mining
systems require a large amount of data transmission,
occupying a large amount of bandwidth, and the mine
underground wireless communication resources are limited.
It is necessary to allocate these resources reasonably to
ensure the effective operation of these services. Coal mine
underground radio resource allocation and optimization is
the interface resources between the entire coal mine wireless
communication system, such as communication bandwidth,
signal spectrum and transmission time slot management,
including channel multiplexing, packet scheduling, network
optimization, load balancing and other related methods.
The efficiency of the entire communication system is
improved by maximizing the rational use of wireless network
resources. In existing coal mine wireless communication
resource optimization algorithms, there are adaptive
feedback, wireless cooperative channel multiplexing
technologies, etc. The existing wireless resource algorithms
generally have high complexity, and there is still a certain
space between the final calculation result and the optimal
solution. This paper studies the existing coal mine
underground optimization algorithm and optimizes and
improves the existing chaotic neural network. It effectively
reduces the complexity of the algorithm and makes the
setting of parameters more consistent with the underground
coal mine communication environment. At the same time,
through a large number of tests, the parameter sets of
chaotic neural network are provided, and a coal mine
underground wireless resource optimization algorithm
based on chaotic neural network is proposed, and the
simulation results are given. The simulation results show
that the algorithm proposed in this paper can effectively
optimize the interface resources between the entire
underground coal mine wireless communication system and
improve the coal mine resource allocation rate.
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1. Introduction

With the development and extension of large lanes,
the existing systems can no longer meet the
functional requirements of existing safe production

and management [1-2]. In order to meet the needs of the
underground auxiliary communication, the only solution at
present is to upgrade the system. In order to upgrade and
transform the existing system on the mine, all base stations
in the mine must be replaced [3]. The main communication
cables and the controllers of the core equipment in the
equipment room need to be replaced [4-5]. The cost of
upgrading the system and the cost of a new communication
system are basically the same.

Coal mine underground is a special working environment
[6]. Therefore, the mine wireless communication system is
different from the general terrestrial wireless communication
system and has the following features [7-8]. Coal mines have
flammable gases such as gas and coal dust [9]. Therefore, the
requirements for wireless communication devices are
intrinsically safe and explosion-proof devices with good
safety performance. The transmission loss is great. Coal mine
underground space is small, roadway is inclined, there are
corners and branches, rough roadway surface, and windy
stations, locomotives and other obstacles, transmission
attenuation and low transmission power [10]. The emission
power of intrinsically safe explosion-proof electrical
equipment is generally around 10mW-40mW. It has strong
anti-interference ability. The underground space is small, the
electro-mechanical equipment is relatively concentrated, the
power is large, and the electro-magnetic interference is
serious [11]. Therefore, the equipment should have strong
anti-interference ability. With good protection ability, it should
have dust, water, moisture, corrosion, mechanical impact
resistance and other properties. It has strong resistance to
failure. Coal mines are in poor conditions, equipment failure
rates are high, and man-made destruction events occur from
time to time [12-13]. Therefore, the mine wireless
communication system should have strong anti-fault
capability. When some equipment in the system fails, the
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remaining non-faulty devices can
continue to work. It has large channel
capacity. Coal mine underground is a
mobile work environment, and the
existing wired dispatch telephones are
limited [14-16]. With the improvement
of wireless communication system
reliability, communication quality,
function improvement, and cost
reduction, it will play a major role in
production scheduling, especially
emergency rescue and disaster relief.
Therefore, it needs to have a larger
channel capacity. The moving speed is
slow. The mobile speed of the handset
in the mine wireless communication system is slow, which is
mainly determined by the characteristics of mine personnel
and transportation tools.  

The widely studied chaotic neural network model
introduces a negative feedback term with chaotic
characteristics in the Hopfield neural network, and then
obtains the chaotic neural network model. Therefore, it is
necessary to first introduce the Hopfield neural network
before deeply researching the chaotic neural network. The
American physicist J. J. Hopfield first proposed a single-layer
feedback network system. This single-layer feedback network
is called a Hopfield network. The nonlinearity and high
dimensionality of feedback neural networks make it difficult
to determine the state trajectory of existing tools, and even
chaotic phenomena may occur. Due to the complexity of the
neural network with chaotic characteristics, it has been widely
studied.

2.  The principle of chaotic neural network
Chaotic neural network can accurately find the balance point
and periodic law in the communication network [17-18]. It is
one of the most popular technologies in modern information
processing technology and has good dynamic characteristics.
The disadvantage is that the algorithm is easy to fall into the
trap of local optimization, and the convergence of the
algorithm is not high, and local optimization is needed. The
chaotic neural network is a self-feedback recursive system
[19]. Each time the calculation result is recalculated as the
initial condition of the next iteration, the entire network
becomes convergent. When the system reaches steady state,
the iterative process ends.

The transient chaotic neural network model is as follows:
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Hereinto, formula (1) is the excitation function of the
neuron; xi is the output of the i neuron; yi is the input of the
i neuron; Wij  is the coupling weight value from j neuron to i
neuron; Ii is the replacement of the i neuron; I0 is a normal
number,  is the coupling strength between neurons, also
known as the coupling factor; k is the nerve diaphragm
damping factor, 0<k<1; (0<<1) is the simulated annealing
parameters, zi(t) is the simulated annealing’s initial value.
Equation (3) is analogous to the simulated annealing algorithm
function. As the number of iterations increases, this equation
will gradually go to zero.

Formula (1) is not fixed as an excitation function, it can be
a Sigmoid function, or it can be another function that is
consistent with Sigmoid (Fig.1).

This paper uses the Sigmoid function, which is the model
proposed by Chen and Aihara [1]. The Sigmoid function is
shown in the following formula.

f(u) = 1/(1+exp (–u/)) ... (4)
In which,   is the gain parameter.
When  = 0, the above three equations evolve into

chaotic neuron models:
x(t) = f(y(t)) ... 5
y(t+1)=ky(t)–z(t)(x(t)–I0) ... 6
z(t+1)=(1–)z(t) ... 7

3.  Wireless OFDMA resource optimization model
The existing mine-based wireless communication system is
mainly based on the multi-user OFDMA technology. Its
resource allocation includes two modes: dynamic resource
allocation and static resource allocation. The existing ones are
based on dynamic allocation.

Suppose RT is coal mine underground wireless
communication system’s signal transmission rate; Pi is the
system transmit power; PE is sum of multi-channel error rates;
BER is the bit error rate of a single channel. The mathematical
model of the optimization of signal bit, power and carrier load

Fig.1 Neural network model with sigmoid function
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in the underground wireless communication in the coal mine
is as follows.

The final optimization goal is
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The above optimization problem for the radio resources
on the mine forms different models for finding balance points
through the conditions defined in Equation (10)-Formula (13),
where Equation (9) represents the optimal formula for the
transmission power of the wireless communication network.
Equation (8) indicates the optimal solution to the maximum
bandwidth of each business system. The conditional
expression (10) represents the specific service range allocated
to the sub-channel i. The condition (11) restricts a sub-
channel to be used by only one specific service. Equation (12)
indicates that the sub-channel transmission power is positive.
The sum of the total powers of the services cannot be limited
to exceed the maximum rated power, and Equation (13)
represents the requirements for signal transmission rates of
different services.

4. An optimization algorithm based on chaotic neural
network

Chaotic neural networks use phase space to search quickly
in the global scope. Compared to the previous algorithm, the
disadvantages of falling into the local optimum are solved,
and the convergence is greatly improved compared to before.
The neural network-based maritime radio resource
optimization model is as follows.
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In the formula, Ux ,  j( t)  is the transient state of information
processing element; Vx, j( t )  is the network element output at

the moment t; u0 is information processing unit weight factor
coefficient;  is the convergence damping coefficient; a is
positive correlation scale factor; wx,  i :  y,  j( t)  is correlation
coefficient between two information processing units; zx,  i( t)
is the recursive feedback factor; I0 is the positive normal
number;  is the feedback declining factor.

In the multi-service OFDMA wireless communication
system on the mine, the signal modulation method adopts
M-QAM, then each frame of the customers’ business x
contains c x,i  bits at the sub-channel i,  M T= 2 cx, i .  If the
grain factor of the sub-channel i is |Hx,i |

2, the optimal value
needed to transmit cx, i bits’ transmission power is:
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In the formula, Pe is the error rate controlled by the system.
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Ultimately, the optimal transmit power of the channel
occupied by each service is determined by N0, Pe, |Hx,i |

2,
and modulation methods.

In a specific mining wireless communication application
scenario, the service can occupy multiple transmission sub-
channels according to the required bandwidth. When the
number of used channels is N, the total number of bits
transmitted by the service x per unit time has the following
expression.
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5. Simulation

This paper simulates the resource optimization algorithm of
OFDMA single cell wireless communication system based on
chaotic neural network in Matlab platform. The base station
is located in the center of the network and the carrier
frequency is set to 2 GHz. The number of maritime
communications services is 4. The number of users is 6, and
the comprehensive priority is 1:2:2:3:4:4. The detailed
parameter settings of the algorithm are shown in Table 1.

The chaotic neural network structure simulated in this
paper is a two-dimensional model. The signal processing cell
number distribution is K×N , where K is the number of users
and N is the number of services. The gain matrix of the entire
maritime wireless communication channel is H, and the
specific parameter Hx, i is the gain coefficient of the service in
the multipath channel. The entire chaotic network parameters
are as follows: u0 = 7, a = 0.06, = 0. 95, I0 = 0. 65, z(0) = 0. 89,
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Ae = 0.15, Be = 2.5, Ce = 6, De = 2, Fe = 3.
According to the above algorithm, three random

hypothesis tests of Golomb were conducted. First, according
to the Golomb hypothesis, the 0, 1 ratio of a pseudo-random
binary sequence is 1:1.

Table 2 is the number of 0, 1 and ratio of multiple tests,
take = 0.004, I0 = 0.1, k = 0. 6, y(1) = 0. 2, z = 0.1. It can be seen
from Table 1 that the 0, 1 ratio basically goes to 1.

Secondly, the run-length characteristic, i.e. the number of
runs with L as the total number of runs, is 1/2L. Table 3 shows
the test data when the value of the above parameter is used
and the number of iterations is 2000.

It can be seen from Table 2 that since the statistical time
series is limited, the actual ratio is close to the theoretical
ratio, and it can be considered that the chaotic binary
sequence accords with the run characteristics.

Again, auto-correlation and cross-correlation. Set
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The auto-correlation function is
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The cross-correlation function is
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Hereinto, x1i and x2i refer to a binary sequence
corresponding to the chaotic time series generated from
iterations starting from two different initial values; m denotes
the correlation interval.

The quantified chaotic binary sequence was tested for
correlation characteristics. The length of the sequence was
2000, and the correlation interval was –500 to 500. The
aperiodic auto-correlation and cross-correlation properties
were shown in Figs.2 and 3. From the experimental results, it
can be seen that the chaotic sequence has sharp auto-
correlation properties and very small cross-correlation values.

Through the above analysis, it can be seen that the
chaotic binary time series is pseudo-random and can be

TABLE 1 PARAMETER SETTING

Parameter name Range
System frequency/GH2 2
Selected channel model Multi-fading channel

model
Sub-channel frequency interval/kHZ 15
Time slot/ms 0. 5
Number of data bits transmitted per timeslot 7
Communication system’s rated bit error rate 10-4

Comprehensive priority levels 1:2:2:3:4:4
Number of users 6
Number of multichannel Carriers 32, 48, 64, 80, 96,

112, 128
Signal modulation M-QAM

TABLE 2 THE NUMBER OF 0 AND 1 AND RATIO

Iteration The number The number The ratio
times of 0 of 1 of 0 and 1
2000 15884 16116 0.9856
5000 39502 40498 0.9754
8000 63047 64953 0.9707

TABLE 3. RUN CHARACTERISTICS

Run N0 N1 N0/N1 Actual Theoretical
ratio Ratio

1 4283 4232 1. 012 0. 5118 0. 5000000
2 2168 2017 1. 074 0. 2515 0. 2500000
3 1014 1059 0. 957 0. 1246 0. 1250000
4 516 477 1. 081 0. 0596 0. 0625000
5 236 229 1. 030 0. 0279 0. 0312500

Fig.2 Self-correlation property map

Fig.3 The cross correlation diagram
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applied to stream cipher encryption.

6. Conclusion
In the field of wireless communication in underground coal
mines, with the increase of services and users, its wireless
resources have become more and more tense. How to allocate
resources and make rational use of resources efficiently is the
key to ensuring the operation of all businesses. The existing
algorithms for optimizing wireless communication resources
on mines include adaptive feedback, wireless cooperative
channel multiplexing, etc. The ubiquitous algorithm has high
complexity, and there is a certain degree between the final
calculation result and the optimal solution. space. The
algorithm proposed in this paper can effectively optimize the
interface resources between the entire underground coal mine
wireless communication system and improve the coal mine
resource allocation rate.
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