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Abstract
In underground mines, the problem of efficiently scheduling and allocating weekly operations has a major impact on the  
long-term productivity of the mine. The problem of selecting the optimal locations for operations in an underground gold mine 
is a complex task. It is not solved by simply selecting the levels with the richest grade because the transportation network for ore 
in an underground mine has a diverse set of capacity constraints that can frustrate immediate mining of all the richest levels. 
To solve this scheduling difficulty, we formulated a new mixed-integer network flow model of the problem of weekly allocating 
mining operations in an underground goldmine such that the total gold mined (in ounces) was maximized subject transportation 
capacity constraints. The model was applied an underground gold mine in Red Lake, Ontario, Canada. The results were compared 
to those of a two greedy heuristic models that were designed to represent the decision-making heuristics that are currently used 
at the mine. It was found that the new model yielded solutions that improved upon the two greedy heuristics by 14.7% and 6.0%, 
respectively. The results of this research illustrate that the development of this optimization model can support decisions to 
improve a gold mine’s productivity.
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1.0 Introduction
In underground mines, the problem of scheduling the 
weekly locations of mining operations has a major impact 
on the productivity of the entire mining operation (Yun, 
1990). The objective of the weekly schedule is to maximize 
production, but it is difficult to optimize for two reasons. 
First, the solution (i.e., the optimal locations selected 
to mine over the next weekly period) is constrained by 
the feasibility of transporting the mined material from 
the selected locations, through the capacity-constrained 
transportation network, to the surface. The transportation 
network in an underground mine has strict capacity 
constraints on the mass of material that can move, per 

unit time, through many links within its transportation 
network. These cond reason this problem is difficult to 
solve optimally is that commercial software is currently 
available for such a planning problem in underground gold 
mines. There is no general-purpose software package that 
has been designed to represent realistically the diversity 
of constraints peculiar to the many underground mine 
types—including underground gold mines. As a result, 
planners are forced to resort to using ‘rules of thumb’ to 
solve this problem.

In underground gold mines in particular, the 
operational planning problem of scheduling the weekly 
locations of mining operations, subject to transportation 
constraints, has, tour knowledge, not been formulated 
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as an optimization model at the operational scale of 
planning. The problem has therefore been solved using 
‘rules of thumb’ (i.e., heuristics) typically executed on a 
spreadsheet. Finding an optimal rather than a heuristic 
solution to this problem is important for two reasons. First, 
the difference between an optimal and a heuristic solution 
may have major differences in the objective function 
value of the problem’s solution; i.e., the mine’s operational 
productivity, measured in ounces of gold delivered to 
the surface per day. This is because, in a goldmine, the 
grade of the gold-ore (measured in g/ton) varies from 
location to location. In other words, the value of the 
locations selected for mining can vary greatly because 
of the variance of grade across space, in an underground 
gold mine. Hence, if this were, for example, a coalmine 
(e.g., Brzychczy 2014), the difference between a heuristic 
and an optimal solution to this problem may not be great, 
because the value of the grades a teach selected location 
differ less significantly than in a gold mine. Since this is 
a gold mine, the value of the optimal feasible solution 
is highly sensitive to slight differences in the locations 
selected for mining. Therefore, the difference between an 
optimal and a heuristic solution to this problem may be 
quite important economically.

A second reason for the importance of using an 
optimization model on this problem is that the above-
ground processing facilities are constrained, in their daily 
productivity, by the value of the gold-ore that is delivered 
to the surface each day. Since the value of the gold ore 
delivered to the surface each day is the objective function 
of this operational problem’s optimization model, the 
solution to this problem has a direct impact on the 
productivity of the above-ground processing facilities. 

In other words, the solution to this problem, when 
seen in a broader context, can be seen to act as a constraint 
on the economic productivity of the entire mining 
facility itself. The objective of this chapter is to formulate 
and evaluate a new operational planning model for the 
underground gold mining problem of scheduling the 
weekly and optimal location of mining operations, subject 
to transportation constraints on the flow of material. The 
formulation will be of a mixed-integer, network-flow 
model. This model will be applied to a case study at the 
Red Lake Gold Mine in Ontario, Canada. The model will 
be evaluated by comparing its solution to that of a greedy 
heuristic currently used. In this way, we will evaluate a 
larger question: whether the benefit of using a specific 
operational planning model, for constraint speculiar to 
underground gold mine, is of any economic consequence.

The outline of this chapter is as follows: first, a 
Literature Review is presented; second, the formulation of 
the new model and the heuristic algorithm are presented 
in the Methods; third, the Case Study, Red Lake Gold 
Mine, is described; fourth, the Results are presented, in 
which the optimal solution is compared to the heuristic 
solution; and finally, a Discussion of the chapter’s results 
and their significance is evaluated.

2.0 Literature Review
Literature reviews on the use of operations research in 
mining in general (e.g., Newman et al., 2010; Bjorndall 
et al., 2011; Kozan and Liu,2011), and below ground 
mining in particular (Alford et al., 2007), indicate that: 
while there is a wealth of research in the development of 
optimization models for strategic and tactical problems 
in mining, published work on scheduling models used at 
the operational scale have been much more scarce. The 
literature to be reviewed on this problem is therefore 
brief and shows a great diversity of models formulated 
for operational production planning. For this reason, the 
review is presented chronologically, not thematically.

Nehring, Topal, and Knights (2010) developed a 
model for a sub-level stoping mine,which was used to 
solve the problem of scheduling and allocating machines 
for the transportation of extracted ore from the draw-
points, via intermediate storage, to a haulage shaft.
The model also included decisions on a second-stage 
movement of ore; i.e., transporting ore from an ore-
passtoa crusher. The problem was formulated as a Mixed 
Integer Programming (MIP) model to allocate machines 
to different draw-points, on a shift basis, over a period 
of 2 months. The objective function of the model was to 
minimize the deviation from production targets subject to 
constraints on machines and crew. The model’s solutions 
were evaluated on as imulated mine.

Martinez and Newman (2010) developed a 
comprehensive operational scheduling and allocation 
model for an iron ore mine in Northern Sweden. The 
model minimized deviations from monthly production 
targets subject to a host of operational constraints, many 
of which were peculiar to sub-level caving. TheMIP 
model was solved on areal-world dataset, using aheuristic 
algorithm, to within 5% of production targets.

Howes and Forrest (2012) described an approach 
to improving operational decision-making at a mine 
in Bulgaria. A key strategy introduced in this work was 
short interval control. This involves the use of real-time 
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production information to provide a central monitoring 
and control room with the real-time status of all tasks 
in the mine. This comprehensive communications 
infrastructure was designed to support key front line 
decision-making on operational resource allocation 
achieves the maximum efficiency for each shift. 
Atpresent, the decisions are made by management in the 
central control room, but the development of operations 
research models to support management decisions in 
this environment is then extstep in the evolution of this 
ambitious project, and therefore a fruitful field of future 
research on operational scheduling in mining.

Little, Knights, and Topal (2013) evaluated the advantage 
of simultaneously integrating decisions on both stope layout 
and production scheduling into one model. They found 
that the solutions generated by the integrated model were 
superior to those using different models sequentially. The 
benefits of integrating separate but interdependent models, 
as demonstrated by these authors, are promising.

Schulze et al. (2016) scheduled a mobile production 
fleet in an underground, room-and-pillar, potashmine. The 
objective of the model was to minimize the make-span, i.e., 
to create the shortest logical project schedule, by efficiently 
using project resources and adding the lowest number of 
additional resources to each sub-task. The problem was 
formulated as an MIP model and solved using a commercial 
solver. The authors continued to explore the room and 
pillar-scheduling problem by developing a heuristic solution 
method in Schulze and Zimmermann (2017).

Campeau and Gamache (2019) present edan optimization 
model for short-term scheduling of excavation, hauling, and 
back filling activities at a cut-and- fill gold mine in Canada. 
The objective function was to maximize total discounted 
ton nage extracted over an eighteen week planning horizon, 
subject to resource and sequencing constraints. The authors 
observe that the rea lvalue of their solutions rests heavily on 
the quality of the tactical plan’s selected sequence of blocks, 
on which their model acts.

From this review of the literature, one can draw 
two observations. First, that the problems mode led for 
operational planning in underground mines are not 
generic but quite diverse and specific to mine types. 
The models formulated were often custom-built for the 
particular extraction method of the mine and its design. It 
is perhaps for this reason that there exists no commercial 
optimization software that is universally employable 
for operational scheduling in all underground mines, 
as there is for tactical planning of underground mines 
(Newman 2010). A second observation that can be drawn 

from the literature review is that the particular problem 
addressed in this paper (i.e., the optimal operational-scale 
scheduling of gold ore and waste flow, in an underground 
gold mine) has not been addressed with in prior research.

3.0 Methods
The Methods are divided into 4 parts. First, a description of 
the problem, with a conceptual figure, is given; second, the 
mathematical formulation of the optimization model is pre-
sented; third, the heuristic algorithm used in this paper, tore 
present the current decision-making procedure at the mine, 
is given. Finally, the case study and data used are described.

4.0 Description of Modeled 
Problem

A conceptual figure of the problem is presented in 
Figure 1. Here we observe a simplified representation of 
an underground gold mine. First, observe that there are 9 
levels. Each level may have a different: i) grade of ore (g/
ton); ii) mass of ore that may be removed daily (tonne/
day); and iii) mass of waste that must be removed if ore 
is removed (tonne/day). Second, observethat There are 
two types of shafts for downward movement of mined 
material: ore and waste shafts.

There are no capacity constraints on these shafts.
Third, observe that, at the bottom each shaft, horizontal 
transportation of both materials occurs.

This horizontal transportation has a daily capacity 
constraint. Fourth, observe that, at the end of the 
network, there is a capacity-constrained elevator to the 
surface where there is a daily demand for ore and a daily 
demand for the mass of waste resulting from the mining 
of the ore. Hence, the problem may be summarized as: 
select a set of levels for daily operation such that the mass 
of gold removed (in ounces) is maximized, subject to: i) 
capacity constraints on ore transportation; ii) daily ore 
targets at the above-ground processing facility is met; 
and iii) the waste material accompanying ore removal is 
removed. The problem is formulated as a network flow 
model where each level is a supply node and the elevator 
is the demand node. Constraints on the flow of material 
occur at transition nodes. Unless these transportation 
capacity constraints are used in planning, the movement 
of both ore and waste through the mine could be stopped 
during a shift because a transportation corridor may 
become backed-up from crews trying to move too much 
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Figure 1. Conceptual figure of the modeled problem.

ore through a corridor, with too little capacity for such 
a quantity, with in the planned period. In addition, the 
selection of a level must be represented by a binary 
decision variable because, if real numbers were used, 
a solution with tiny, fractional mining of levels could 
occur. This is not feasible in practice because the fractions 
might be very small and therefore a solution could be 
produced where it is not worths ending machines and a 
crew to mine a level with a tiny, fractional amount of ore. 
Finally, the daily schedule of production is to befound for 
a planning horizon of 7 days. 

This problem is difficult to solve, for it is a combinatorial 
optimization problem that maybe reduced to the famous 
knap sack problem. In the knap sack problem, one is 
given aset of items, each with a weight and a value, and 
one must select aset of items to include in a knap sack 
such that; i) the total weight is less than or equal to a given 
limit; and ii) the total valve of the contents of the knap 
sack is as large as possible (Salk in and Kluyver 1975). 
The operational mining problem described above can be 
reduced to the knap sack problem because, apart from 
the transportation constraints, the problem is the same; 
that is, selecting a set of levels so that the total mass of 
ore selected is less than or equal to the limit set by the 
elevator’s capacity and the objective is that the total value 
of the gold (in ounces) from the levels selected for mining 
be as valuable as possible. 

5.0 Formulation of the New 
Model

The mathematical formulation of the model is 
presented below.

Indices and Sets 
n, N = index and set of levels in the mine.
t, T =index and set of planning periods.
m, M =  index and set of materials moved through the 

network (i.e., ore or waste material).
i, j, J = index and set of nodes in the network.
B = set of intermediate (transshipment) nodes. 
C = set of arcs with capacity constraints.
Dij = capacity on arc i-j (tons per day).
On = set of arcs flowing out from node on level n.
In = set of arcs flowing into nodeon level n.
F =  the set of terminal arcs in the network  

(a set of 1).
Parameters 
smn =  mass of material type, m, available for 

removal at level n of the mine (tons). 
gn =  estimated mass of gold ore available at level n 

of the mine(grams).
Decision Variables
ynt =  1 if material is removed from level n in period 

t, 0 otherwise.
 xijmt =  flow of material, m, through arc i-j, in period 

t (tons).
Objective Function:
Maximize total mass of gold removed (in grams) over 

all periods
∑        ∑yntgnt [1]
n∈N       t∈T

Subject to:
Mine each level not more than once.
∑ynt≤1      for each n∈N [2]
t∈T

If a level is mined, it is a source of ore and waste mate-
rial flow.

∑xijmt-     ∑xijmt = yntsmn   for each n∈N, m∈M, t∈T [3]
(i,j)∈On    (i,j)∈In

Transition nodes defined.
∑xijmt-    ∑xijmt = 0  fo reach n∈N, m∈M, t∈T [4]
(i,j)∈On   (i,j)∈In

Terminal node defined.
∑xijmt-    ∑xijmt   = ∑yntsmn   fo reach m∈M, t∈T [5]
(i,j)∈F    (i,j)∈F       n∈N

Capacity constraints.
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∑xijmt    ≤ Dij    for each ij∈C, t∈T [6]
m∈M     (i,j)∈F   n∈N

Binary and non-negativity constraints.
ynt∈{0,1}  for each n∈N, t∈T [7]
xijmt≥0    for each ij∈J, m∈M, t∈T [8]

The objective function [1]of the model is to maximize 
the total mass of gold removed (in ounces) during the 
daily shift. The mass of gold is based on the tactical plan’s 
estimated grade be at each level (measured in grams per 
tonne) and the total mass of gold ore and waste (measured 
in tonnes) that is currently available to be mine data given 
level. The first constraint [2] e nsures that no level may 
be mined more than once over the planning horizon. 
These second constraint [3] defines the potential sources 
of flow through the network. This constraint ensures that, 
if a given level, n, is mined in period t, then each material 
type, m, will flow out of the node on this level and into the 
network. Note that the flow of each material type (ore and 
waste) is tracked separately from each source.

Constraint [4] is a standard flow balance equation 
for transition nodes in a network model. Equation [5] 
defines the terminal node and the mass of each material 
type demanded at the terminal node. Note that the total 
mass of each material type refers to the total mass of 
each material type that was mined during each period. 
There is an upper bound on this valve implicit in the 
capacity constraint on the arc connected to the terminal 
node. Equation [6] defines the capacity constraints on 
the flow of material types imposed on these to farcs 
with Capacity constraints. Equation [7] ensures that the 
decision variable, ynt, is binary. This variable is binary for 
two reasons. First, the mass of material removed from 
each level must be discrete; otherwise, the model might 
produce solutions that are operationally in feasible (e.g., 
tiny masses of material to be scheduled for removal from 
a level). Second, the binary decision variableis needed to 
trigger the flow in equation [3]. Equation [8] ensures that 
a negative flow valve is not possible. 

6.0 Description of Heuristic 
Algorithm
Given the absence of an optimization model to solve this 
operational problem, our Industrial partner had been using a 
heuristic method (i.e., rules of thumb). This method will now 
be described, for its results will be compared with the results 
of the new optimization model in order to evaluate the latter. 
Given that the objective function of the model is maximize 

the gold ounces removed over The planning horizon, subject 
to capacity constraints, agreedy search was used. A greedy 
search Heuristic has been used quite successfully on many 
versions of the knap sack model (Ackay et al., 2007). In 
this greedy search, the levels were sorted from highest to 
lowest grade, and selection proceeds from highest to lowest, 
subject to capacity constraints. An algorithmic flow chart of 
the Greedy search is presented in Figure 2. Here, the search 
is repeated each of the 7 days, and all candidate levels are 
rendered eligible at the beginning of the search.

In the greedy heuristic described above, there is a 
demand limit on two types of materials mined: Gold ore 
and waste. In addition, a second heuristic is used in the 
paper, called heuristic 2. Heuristic 2 places a demand 
limit only on the ore and allows the mass of waste to 
exceed its target. Heuristic 2, therefore, allows for greater 
opportunity to maximize the valve of the objective 
function while running the risk of mining as light excess 
of waste. Heuristic 2 is sometimes used by the planners at 
Red Lake. Hence, the trade-off involved in using heuristic 
1 versus heuristic 2 is a practical one for decision makers 
to explore and use. In this paper, both heuristic 1 and 

Figure 2. Algorithmic flow chart of greedy heuristic.
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heuristic 2 are used and their results are presented and 
compared with the results of the new optimization model.

7.0 Description of Case Study
The case study is the Red Lake underground gold mine, 
located in Red Lake, Ontario, canada. The mine is 
approximately 50 years old and is currently under the 
management of Newmont-Gold corp Corporation, our 
industrial partner. The levels of production are shown 
in Figure 3. Each level contains discrete masses of both 
ore and waste material. The mass of each block, in each 
level ranges from 3,500–5,000 ton. Each block has been 
scheduled, in the tactical plan, formining with in the 
calendar- year. The objective of this model Is to transform 
the annual tactical plan into an optimal weekly operational 
plan of production. There are 19 levels currently eligible 
for production, based on the tactical plan. The levels 
scheduled for tactical operation at the Red Lake gold 
mine are presented in Figure 3. First, observe that there 
are three sets of levels. Second, observe that, at the bottom 

Table 1. Ore and waste values at each level of the 
case study
Level Gold Ore 

(tonnes/day)
Grade 

(g/tonne)
Gold 

(ounces/day)
Waste (tonnes/

day)
16 174 7.1 43.7 120
17 291 5.6 57.4 126
18 208 10.0 73.4 142
19 318 11.7 130.9 155
20 258 10.6 96.3 134
21 291 14.1 145.3 133
22 277 11.3 110.5 145
24 168 6.5 38.9 112
26 259 8.9 81.6 119
27 215 11.6 87.6 201
28 251 9.9 87.5 152
29 264 13.7 127.3 187
31 226 8.5 67.5 111
32 171 9.0 54.6 86
33 205 9.7 70.2 129
34 245 13.2 114.3 116
35 185 5.6 36.4 179
36 179 6.3 40.1 83
37 260 5.4 49.4 184

Figure 3. Underground mine at Red Lake, Ontario, Canada.
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of the ore and waste shaft so feach level, horizontal 
transportation of material is required, and there is a daily 
haulage capacity constraint on this. Third, observe that, at 
the bottom of the mine, there is an elevator to the surface 
with a daily capacity of 3,000 tonne/day. The daily demand 
at the surface is for 2,000 ton of gold ore and 1,000 ton of 
waste to be sent to the surface daily. 

Each block at each level at Red Lake differs by: i) 
the grade of the ore(g/ton); ii) the mass of ore that can 
be removed in one day (tonne/day); and iii) the mass of 
waste that must be removed in one day (tonne/day), if ore 
is removed. The values for these parameters are presented 
in Table 1. It should be noted that parameters in Table 1 
for the grade of ore are not real. Our industrial partner, 
understandably, wished to keep these values on grade 
private. The parameters for the grade of ore were therefore 
generated using a random number generator such that 
each level was randomly assigned (with equal probability) 
a grade between 5 and 15 grams of gold per tonne of ore. 
This range of grades is realistic for a typical gold mine; 
and the fact that the values as signed are not real does not 
compromise the evaluation of our optimization model.

8.0 Results
The objective function values resulting from the 
application of the optimization and greedy heuristic 
models to the case study are presented in Table 2. 
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effect of the first flow constraint (between levels 29 and 31 
as shown in Figure 3), of 1, 800 tons of total material flow 
per day, on the three different solutions. The solution of 
the optimization model moved 1, 606 tonnes of material 
and 491 ounces of gold from level 29 to 31; and the 
solution of the greedy heuristic moved 1, 689 tonnes of 
material and 468 ounces of gold. Hence, the capacities 
between levels 29 and 31 was more closely met by the 
greedy heuristic than by the optimization model. This 
difference indicates that the optimal solution does not 
need to maximize the flow of material or gold through 
this capacity constraint (between levels 29 and 31) a sit 
does through the final capacity constraint (after level 37). 

Table 2. Results of the optimization and greedy 
heuristic models compared

Gold 
(ounces/

day)

Ore 
(tonnes/

day)

Waste 
(tonnes/

day)

Total 
(tonnes/

day)
Optimization 

Model
774.8 1,993 993 s2,986

Greedy Heuristic 1 675.6 1,292 921 2,213
Greedy Heuristic 2 731.1 1,708 1,007 2,715

Table 3. The solutions of the optimization model 
and greedy heuristics

Level Optimization 
Model

Greedy 
Heuristic 1

Greedy 
Heuristic 2

Grade (g/
ton)

16

x x x

7.1
17 5.6
18 10.0
19 11.7
20 10.6
21 x x x 14.1
22 x 11.3
24 6.5
26

x

8.9
27 x x 11.6
28 9.9
29 x x 13.7
31 x

x

x
8.5

32 x 9.0
33 x x 9.7
34

x x x

13.2
35 5.6
36 6.3
37 5.4

Table 2 yields several observations. First, the objective 
function (i.e., maximize gold ounces Mined per day) 
of the optimization model is greater than the objective 
functions of both greedy heuristics: it is 14.7% higher 
than greedy heuristic 1 and 6.0% higher than greedy  
heuristic 2.

These results indicate the benefit of formulating and 
using an optimization model for solving this Problem 
versus using the current greedy heuristic. Second, Table 
2 also shows that greedy heuristic 2 achieved a higher 
objective function than greedy heuristic 1 by exceeding 
its waste Limit (of 1,000 tonne/day) by 7 tons per day; and 
that, even after exceeding its waste limit, the Objective 
function of greedy heuristic 2 was 6% lower than that of 
the optimization model. These Results therefore show 
that the valve of a solution to this problem depends not 
only on the optimal Removal of gold ore alone; but also, 
on the optimal removal of ore and waste simultaneously.

Third, Table 2 also shows that the solution of the 
optimization model came closest to maximizing the 
capacity of network’s final node (i.e., 3,000 tonne/day 
capacity of the elevator carrying material to the surface). 
This can be seen by the values under the total tonne 
removed per day where the Optimization model’s solution 
used 96.5% of the capacity, while greedy heuristic 1 used 
only 73.8% and greedy heuristic 2 used 90.3%.

These differences in capacities used shows the 
importance, in this problem, of packing the elevator to 
the surface as closely to its capacity as is possible by using 
an optimization model based on the knap sack model. The 
solutions of the optimization model and greedy heuristics 
are presented in Table 3.

Table 3 presents the locations of the levels selected 
for mining in each day. Note that the selected locations 
did not change over the days of scheduling because of 
their great magnitude (in tonnes) relative to magnitude 
(in tonnes) of material removed daily. Table 3 yields 3 
observations worthy of note. First, one can observe the 

Hence, In this model of the problem, the final capacity 
constraintal one functions as a knap sack constraint, 
i.e., a constraint by which as much gold as possible must 
flow subject to a capacity limit on total flow of material 
(tonnes/day).

Second, Table 3 shows that the optimal solution 
contains levels of a lower grade of ore than the solutions 
of the greedy heuristics. The average grade of ore for the 
levels selected in the optimalis 10.8 g/ tonne; while the 
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average grade per level for the solutions of greedy 1 and 
greedy 2 were 12.3 and 11.9g/ ton, respectively. The lower 
grade selected in the optimal solution was facilitated by 
more closely packing the total material capacity constraint 
of 3,000 tons/day, thus enabling the movement of more 
material and therefore more total gold perday than the 
greedy heuristics. Hence, the results in Table 3 illustrate 
how the optimal solution represents a more successful 
resolution of the trade-off implicit in this problem; viz., 
the problem of packing as much gold as possible into 
the terminal node of the network subject to capacity 
constraints in the transportation network.

Third, from Table 3 one can observe that the optimal 
solution included more levels to operate on than the 
heuristic solutions. The optimal solution contained 8 
levels, while the solutions of greedy heuristic 1 and 2 
contained 6 and 7 levels, respectively. The extra level of 
operation contained in the optimal solution entails a 
higher operational cost and the decision-maker must 
evaluate whether the additional cost of operations is worth 
the additional flow of gold accompanying this solution. 
In this case, the trade-off between the optimal solution 
and the solutions of heuristic 1 and 2 implies that: an 
increasing old moved to the surface, by 14.7%, requires 
an extra 2 levels of operation compared to heuristic 1; and 
an increasing old mined, by 6.0%, requires an extra one 
level operation compared to heuristic 2 (which area l so 
has excess waste mined).

9.0 Discussion
From the results, we find several points deserving 
discussion: first, the merit of the greedy heuristic used  
in this paper; second, First, an evaluation of the greedy 
heuristic versus the optimization model is required. To 
do this, it should first be noted that agreedy heuristic has 
been used, for many decades, to solve multiple versions of 
the knap sack model (Pisinger, 1999) and has produced 
useful results (Akcay et al., 2007). In other words, by 
using the greedy heuristic method to provide results with 
which to compare and evaluate our optimization model, 
we have not selected a weak and in significant method. 
Greedy heuristics have been used, in practice, to solve 
large instances of the knap sack problem (Ferdosian, 
2016). The operational mine-level scheduling problem 
modeled in this paper is not likely ever to have a problem 
instance so large that it will require a greedy heuristic 
to solve it. This is because the binary decision variable, 
used in this model, represents a mine’s level; and there 

would need to be in excess of 5,000 mine levels for a 
problem instance to be computationally infeasible for an 
optimization model which is NP-hard. Hence, it unlikely 
that the benefits of using an optimization model instead 
of a greedy heuristic, to solve the model in this paper, will 
ever become computationally infeasible. 

Second, it should be observed that the results illus-
trate two practical benefits of using the optimization 
model instead of the greedy heuristic. The first benefit is 
the increased valve of the objective function. The objec-
tive function of the optimization model was 14.7% and 
6.0% higher than the objective function of greedy heuris-
tics 1 and 2, respectively. The practical benefit of this is an 
increase in the mine’s economic productivity. The second 
benefit is an improved scheduling of waste removal. The 
results produced by the greedy heuristics show the awk-
ward predicament that arises when a greedy heuristic is 
used to schedule the removal of both ore and waste; i.e., 
either under utilization or over utilization of the mine’s 
transportation capacity occurs, when compared to the 
solution for the optimization model. For example, Table 
2 shows that heuristic 1 under utilized the mine’s trans-
portation capacity because it was forced to stop adding 
levels to bemined when the waste to be moved reached 
921 tonnes (i.e., 92% capacity) and this meant that total 
material (i.e., ore + waste) to be moved reached only 2, 
213 tonnes (i.e.,74% of capacity). Table 2 also shows that, 
for heuristic 2, the mine’s capacity to remove waste was 
slightly exceeded. In practice, the excess waste is placed in 
temporary underground storage and when the capacity 
of this underground storage is exceeded, then the sched-
uled flow of ore through the system must be interrupted 
so that the excess waste can be removed.

These intermittent interruptions of the movement 
of ore to the surface have the effect of intermittently 
under-utilizing the ore-processing facilities at the surface 
of the mine. Hence,an additional practical advantage 
of using the optimization model is not only that it 
maximizes the mine’s capacity to move material, but 
that itdoes so without intermittent interruptions caused 
by the stock piles of waste. Finally, the results illustrate 
the benefits of developing an operational-scale model 
for an underground mine. The reason operational-scale 
optimization models have not been widely used in the 
underground mining industry is because operational 
problems in underground mines are less generic than 
tactical models. That is, different types of mines have 
constraints or objectives that are peculiar to that mine 
type, and an optimization model would therefore need 
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to be tailor-made for that type of mine in order to plan 
for operations As a result, but the development and use 
of operational-scale models not been broadly used and 
heuristic approaches have been relied upon to generate 
solutions (Chowdu et al.,2021).The results in this paper 
illustrate the scale of the economic benefits that can be 
gained by developing and using an operational scale 
model versus the heuristics.

10.0 Conclusion
In this study, a new formulation of an optimization model 
was developed and evaluated for solving the problem of 
scheduling weekly levels of operations in an underground 
gold mine. The results illustrate that an increase in 
productivity between 6% and 14.7% resulted from using 
the optimization model versus the currently used heuristic 
method. These results indicate that the development 
of new optimization models for underground mining 
problems can be a field of study with important economic 
consequences.
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