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Convective instability of a horizontal ferromagnetic fluid
saturated porous layer with magnetic field dependent
(MFD) viscosity subjected to gravity field varying with
distance in the layer is investigated. The fluid motion is
described by the Brinkman model. The method of small
perturbation is applied and the resulting eigenvalue
problem is solved using the higher order Galerkin
technique. The stationary instability is shown to be the
preferred mode of instability and the resulting eigenvalue
problem is solved by taking into account the realistic rigid-
rigid-isothermal boundary conditions. The study reveals
that the effect of MFD viscosity is to delay the onset of
ferroconvection and the stabilizing effect of MFD viscosity
is reduced when the magnetic Rayleigh number is sufficiently
large. In the presence of variable gravity, the effect of
magnetic and non-magnetic parameters on ferroconvective
instability is also discussed.
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1.0 Introduction

Ferromagnetic fluid is a liquid that can be described as
a colloidal system of sufficiently small mono-domain
magnetic particles dispersed in various carrier liquids.

These fluids behave as homogeneous continuums,
exhibiting a variety of fascinating phenomena. These
particles are coated with a stabilizing dispersing agent
known as a surfactant, which prevents particle
agglomeration even when the ferromagnetic fluid is
subjected to a strong magnetic field gradient. The resulting
material behaves similarly to a normal fluid, with the
exception that it can experience forces due to magnetic
polarization. Ferromagnetic fluids do not exist in nature and
must be created artificially. These fluids have a wide range
of applications, including novel energy conversion devices,
levitation devices, and rotating seals, lubrication, printing,
MRI (Magnetic Resonance Imaging), vacuum technology,

vibration dumping, metal recovery and medicine. The
convective instability of a ferromagnetic fluid for a fluid
layer heated from below in the presence of uniform vertical
magnetic field has been considered by (Finlayson, 1970).
(Gupta, 1979) studied thermal instability in a ferromagnetic
fluid layer is subject to Coriolis force and saturated by a
vertical magnetic field, over stability cannot occur if the
Prandtl number is greater than unity. (Yamada, 1982) have
generalized the boundary conditions on the magnetic scalar
potential and have presented calculations for ferrofluids
confined between plates of infinite magnetic permeability.
Stiles and Kagan, 1990 probed the thermoconvective
instability of a horizontal ferrofluid layer in a strong vertical
magnetic field. Their findings also called into question the
claimed satisfactory agreement between the experiments and
Finlayson’s theoretical model, which they generalized.
Abraham, 2002 performed an analytical analysis of
ferroconvection with micropolar characteristics,
demonstrating that magnetic fluids with micropolar
characteristics are invariably more stable than their
Newtonian counterparts. Kaloni and Lou, 2004 consider the
convective instability problems in the horizontal layer of a
magnetic fluid with a Brownian relaxation mechanism.

A medium which is solid body containing pores is called
a porous medium. Extremely small void spaces in a solid are
called molecular interstices, and very large ones are called
caverns. Pores are void spaces intermediate in size between
caverns and molecular interstices. Flow of fluid is possible
only if at least part of pore space is interconnected. The
interconnected part of pore system is called effective pore
space of the porous medium. The porous medium of
moderately large permeability necessitates the use of the
Brinkman’s model and medium of very low permeability
allows us to use Darcy’s model. Porous medium is classified
as unconsolidated or consolidated and as ordered or
random. Examples of unconsolidated media are beach sand,
glass beads, catalyst pellets, soil, gravel etc. Examples of
consolidated media are most of the naturally occurring rocks
such as sandstone, limestone and so forth. In addition,
concrete, cement, bricks, paper, cloth etc., are man-made
consolidated media. In a natural porous medium the
distribution of pores with respect to shape and size is
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irregular. Examples of natural porous media are beach sand,
sandstone, limestone, rye bread and wood etc.

The breakdown of stability of a fluid layer subjected to a
vertical temperature gradient in a porous medium, as well as
the possibility of convective flow is investigated by Wooding,
1960. The relationship between chemical processes and
natural convection in porous media is numerically examined
by Shorter, 1983. Thermoconvective instability in a
ferromagnetic fluid saturating a porous medium subjected to
a vertical magnetic field has been analyzed using Brinkman
model by Vaidyanathan et al., 1991. The influence of rotation
on the initiation of convection in a horizontal layer of
ferrofluids spinning about its vertical axis, heated from below
and with a uniform surface. Linear instability analysis is used
to investigate the vertical magnetic field by
Venkatasubramanian and Kaloni, 1994. The effects of
magnetization, a stable solute gradient, and MFD viscosity
on the onset of convection were examined by (Sunil et al.,
2005. Nanjundappa et al., 2010 investigate numerically the
conditions for the onset of ferroconvection in a high
permeability ferromagnetic fluid saturated porous layer by
employing a non Darcian model for rigid-rigid paramagnetic
and rigid free paramagnetic boundaries with fixed heat flux
and convective-radiative exchange conditions at the lower
and upper boundaries, respectively. In a ferrofluid saturating
a porous medium, Hemalatha, 2014 includes the influence of
a magnetic field dependent viscosity, the Coriolis force, and
the Soret effect. A linear stability analysis has been performed.
The Brinkman model is employed. Ram et al., 2019 studied the
impact of magnetic field dependent viscosity on thermal
convection in a ferrofluid layer heated from below in the
presence of dust particles and subjected to a uniform vertical
magnetic field. Prakash et al., 2020 used the Darcy Brinkman
model to examine the effect of magnetic field dependent
viscosity on thermal convection in a rotating ferrofluid layer
heated from below saturating a porous medium in the presence
of a uniform vertical magnetic field.

Although the Earth’s gravity field changes with height
above its surface, we normally ignore this variation in the lab
and treat the field as a constant. For large-scale flows in the
ocean, atmosphere, or mantle, however, this may not be the
case. It is consequently necessary to think of gravity as a
variable quantity that varies with distance from the center.

Pradhan and Samal, 1987 point out, it is likely to be
important to consider variable gravity effects in the large-
scale convection of (planetary) atmospheres. The thermal
stability of a nonviscous fluid layer and that of a viscous fluid
layer, subject to a gravitational field varying with distance in
the layer, have been analyzed by Straughan, 1989. In an
anisotropic porous media; Sharma et al., 2001 investigated the
influence of a changing gravitational field on convective
instability generated by an internal heat source and an
inclination temperature gradient. Rana and Kumar, 2010

studied the thermal instability of the Rivlin–Ericksen elasto-
viscous rotating fluid that permeates with suspended
particles in a porous material under a fluctuating gravity field.
Rana, 2013 examined the thermosolutal convection in Walters’
(Model) elastico-viscous rotating fluid permeated with
suspended particles and variable field in hydromagnetic in a
porous medium. Bala and Chand, 2015 study the variable
gravity effects on the thermal instability of a ferromagnetic
fluid in a Brinkman-Darcy porous medium by the Galerkin
residual weighted method. Mahajan and Sharma, 2018 used
the Chebyshev pseudospectral method to find numerical
solutions for rigid–rigid, rigid–free, and free–free boundary
conditions in water and ester-based magnetic nano-fluids and
discussed the results. Pundir et al., 2021 planned to examine
the effect of rotation and a magnetic field on the thermosolutal
instability of a ferromagnetic fluid in the presence of a variable
gravity field. Sudhir Kumar Pundir et al., 2021 discussed the
effect of Hall current on the thermal instability of couple-
stress ferromagnetic fluid in the presence of a variable gravity
field and a horizontal magnetic field saturated in a porous
medium.

In this paper an attempt is made to study the effect of
variable viscosity on the convective instability of a fluid
saturated a porous medium subject to gravitational filed.
Various cases of stabilizing and destabilizing effects on
temperature are analyzed using Darcy-Brinkman models. The
results are illustrated graphically.

2.0 Mathematical formulation
 We consider a ferromagnetic fluid saturated packed porous

layer confined between two infinite horizontal surfaces 

and  under the influence of a uniform, vertical magnetic
field H0 and a time periodically varying gravity force g=(0, 0,–
g) acting on it, where  with g0 being the
mean gravity.

Fig.1: Schematic of the problem
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The Boussinesq approximation is involved to account for
the effect of density variation. It is assumed that the fluid and
solid matrix are in local thermal equilibrium. The governing
equations describing flow in an incompressible, non-
conducting magnetic fluid saturated porous layer are
(Maruthamanikandan [25]).

... (1)

... (2)

... (3)

... (4)

... (5)

... (6)

where =(u, v, w) is the fluid velocity, 0 is the reference
density, is the porosity, t is the time, p is the pressure, g is
the acceleration due to gravity,  is the fluid density, f is the
dynamic viscosity,  is the effective viscosity,  is the
permeability of the porous medium,  is the magnetic field,

 is the magnetic induction, T is the temperature, 0 is the
magnetic permeability,  is the magnetization, K1 is the
thermal conductivity,  is the thermal expansion coefficient,
CV,H is the specific heat at constant volume and magnetic
field,  is the magnetic susceptibility, K is the pyromagnetic
coefficient and Tr denotes the transpose.

The relevant maxwell equations are

... (7)

 The fluid viscosity is taken to be magnetic field
dependent viscosity in the following forms

... (8)

where 1 and 2 are values of f and  at T=Ta and 0 < <1.

Equations characterizing the basic state are introduced in
the form

... (9)

The solution pertaining to the basic state reads
... (10)

... (11)

... (12)

... (13)

... (14)

... (15)

3.0 Linear stability analysis
The perturbed state equations involving infinitesimally small
perturbations are

... (16)

where the perturbed quantities are indicated by the primes.
The linearized equations governing small perturbations
therefore take the from

... (17)

... (18)
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... (19)

where,

 being the
magnetic potential.

The normal mode solution is adopted and the same has
the form

... (20)

where l and m are respectively the wave numbers in x and y
directions and  is the growth rate. Substitution of equation
(15) into (12) - (14) leads to

... (21)

... (22)

... (23)

where  is the overall horizontal wave
number. Non-dimensionalizing equations (16)-(18) using the
scaling

... (24)

... (25)

... (26)

... (27)

Where  is the Prandtl number,  is

inverse Darcy number,  is Brinkman number,

 is the Rayleigh number,  is

magnetic Rayleigh number,  is the variable

viscosity parameter and . The appropriate
boundary conditions are (Finlayson, 1970)

... (28)

It can be shown that no unstable oscillatory longitudinal
mode is possible and that the critical Rayleigh number for the
stationary longitudinal mode is always less than that for the
stationary transverse and the oscillatory transverse modes.
Hence the preferred form of disturbance is the stationary
longitudinal mode both in the presence and absence of the
variable gravity effect. The stability equations for stationary
instability (with  = 0) are thus given by

... (29)

... (30)

... (31)

The system of equations (29)-(31) can be regarded as an
eigenvalue problem in with the different parameters of the
problem at hand and can be solved using the Galerkin
technique which deals with a large parameter space in an
economic manner.

4.0 Results and discussion
The variable viscosity and variable gravity effect on Darcy-
Brinkman ferroconvection is investigated. Realistic
hydrodynamic boundary conditions and general magnetic
boundary conditions are considered. The local thermal
equilibrium condition for the fluid and solid matrix is assumed.
The critical values associated with stationary instability are
computed by means of the higher order Galerkin method. The
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thermal Rayleigh number R is a function of both magnetic and
non-magnetic parameters. The change in critical Rayleigh
number Rc with magnetic Rayleigh number N, Brinkman
number , inverse Darcy number Da–1, variable viscosity
parameter V, variable gravity effect parameter , non-
buoyancy-magnetization parameter M3 and magnetic
susceptibility  is exhibited. Numerical computations to find
the critical Rayleigh number Rc have been carried out for
various values of the parameters. The results are presented
in Fig.2 through 4.

Fig.1 reveals that the system is most stable when the
magnetic field dependent variable viscosity parameter V
increases from 0 to 1. This is due to the fact that
magnetization of the magnetic fluid is an increasing function
of the strength of the magnetic field. Figs.2 and 3 reveal that
the system is again more stable with an increase in the porous
parameters V and Da–1.

 The destabilizing influence of the magnetic mechanism is
apparent from the Figs.2 through 4. Indeed, the critical
Rayleigh number decreases with an increase in the magnetic
Rayleigh number N and this augmenting effect of N is more
pronounced with respect to the magnetic field dependent
variable viscosity parameter V and the inverse Darcy number
Da–1. Computations reveal that onset of ferroconvection is
advanced when the variable gravity parameter  increases.
This is due to the fact that when  increases, the gravity level
is lifted up. As a result, there is a decrease in the critical
Rayleigh number. Further, both M3 and  have negligible
influence on the threshold of Darcy-Brinkman
ferroconvection with M3 advancing the onset of
ferroconvection and  inhibiting the ferrconvective instability.

In the absence of the variable gravity, variable viscosity
and porous medium, the results agree with those obtained by
Finlayson (1970).
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