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The classical linear stability analysis is used to examine the
effect of thermal radiation on the onset of Darcy-Brinkman
ferroconvection. The boundaries of the fluid layer are
treated as black bodies and the optical properties of the
transparent ferromagnetic fluid are independent of the wave
length of radiation. The fluid and solid matrix are assumed
to be in local thermal equilibrium. Considering realistic
boundary conditions, the principle of exchange of stabilities
is shown to be valid and the critical values pertaining to
the stationary instability are obtained by means of the
higher order Galerkin method. It is observed that the basic
temperature profile turns out to be exponential and
symmetric as the radiative parameters increase and that the
effect of thermal radiation is to delay the onset of Darcy-
Brinkman ferroconvection. The destabilizing influence of
magnetic forces is affected by the radiative parameters. The
effect of magnetic, radiative and porous parameters on the
convection cell size is also discussed.

Keywords: Ferrofluid, thermal radiation, porous media,
magnetic field

1.0 Introduction

Combined heat transfer processes such as convection-
radiation play a significant role in several chemical
processes involving combustion, drying, fluidization,

MHD flows, and so forth. The complexity involved in the
solution of the integro-differential equations resulting from
the coupled convection and radiation problem warrants the
use of several simplifying assumptions. In general, the
radiative process either occurs at the boundaries or as a term
in the energy equation. In the latter case, the radiative term is
usually approximated as a flux in such a way that the term
corresponding to radiation in the heat transfer equation
appears as a gradient term similar to Fourier’s conduction
term. This method has found considerable favour among

many researchers. Alternatively, radiation effects can be
incorporated at the boundaries through appropriate
assumptions. Free surface flows present a challenging
problem to engineers as the combined convection-radiation
at the boundaries has major applications in many industries.

Goody (Goody, 1956) estimated the radiative transfer
effects in the conventional natural convection problem with
free boundaries using a variational method. He solved the
problem for optically thin and optically thick cases and
showed that there could be very large variations near the
boundaries. Goody’s radiative transfer model has been
extended and modified by subsequent investigators to take
into account the effects of magnetic field, rotation and fluid
non-grayness (Spiegel, 1960; Murgai and Khosla, 1962;
Khosla and Murgai, 1963; Christophorides and Davis, 1970;
Arpaci and Gozum, 1973; Yang, 1990; Bdeoui and Soufiani,
1997).

Larson (Larson, 2001) studied linear and nonlinear stability
properties of Goody’s model analytically. When thermal
diffusivity is zero, the energy method is used to rule out
subcritical instabilities. When thermal diffusivity is nonzero,
the energy method is used to find a critical threshold below
which all infinitesimal and finite amplitude perturbations are
stable.

Shobha Devi et al. (Shobha Devi et al., 2002) studied the
problem of Rayleigh-Bénard convection in an anisotropic
porous medium in the presence of radiation. A linear stability
analysis is performed and the Milne-Eddington approximation
is employed for obtaining the initial static state. The Galerkin
method is used to obtain the critical Rayleigh numbers. It is
shown that radiation is to stabilize the system for both
transparent and opaque media. It is found that opaque media
releases heat for convection more slowly than transparent
media and that the cell size gets affected by radiation only in
the case of transparent media.

Maruthamanikandan (Maruthamanikandan, 2003) analyzed
the effect of radiative transfer on the onset of thermal
convection in a ferromagnetic fluid layer bounded by two
parallel plates and heated from below. The Milne-Eddington
approximation is employed to convert radiative heat flux into
thermal heat flux. It is found that radiation inhibits the onset
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of convection in both transparent and opaque media.
Furthermore, the opaque medium is shown to release heat for
convection more slowly than the transparent medium. It is
also shown that radiation affects the cell size at the onset of
convection only in the case of transparent medium.

Anwar et al. (Anwar et al., 2008) studied the effects of
thermal radiation and porous drag forces on the natural
convection heat and mass transfer of a viscous,
incompressible, gray, absorbing, emitting fluid flowing past
an impulsively started moving vertical plate adjacent to a non-
Darcian porous regime. The Rosseland diffusion
approximation is employed to analyze the radiative heat flux
and is appropriate for non-scattering media. Increasing Darcy
number is seen to accelerate the flow; the converse is
apparent for an increase in Forchheimer number. Thermal
radiation is seen to reduce both velocity and temperature in
the boundary layer.

Shateyi et al. (Shateyi et al., 2010) sought to investigate
the influence of a magnetic field on heat and mass transfer
by mixed convection from vertical surfaces in the presence of
Hall, radiation, Soret thermal diffusion, and Dufour diffusion-
thermo effects. Similarity solutions were obtained using
suitable transformations. The numerical results for some
special cases were compared to the exact solution and were
found to be in good agreement.

Jafarunnisa et al. (Jafarunnisa et al., 2012) analyzed the
effect of chemical reaction and radiation absorption on
unsteady convective heat and mass transfer flow of a viscous
fluid through a porous medium in a vertical channel in the
presence of heat generating sources. The nonlinear coupled
governing equations are solved by a regular perturbation
technique. The effect of chemical reaction and radiation
absorption on all flow characteristics are discussed with the
help of graphs.

Most investigations of ferroconvection consider only
thermally conducting ferromagnetic fluids
(Maruthamanikandan et al., 2018; Soya Mathew and
Maruthamanikandan, 2018; Nisha Mary Thomas and
Maruthamanikandan, 2013; 2018; 2020) albeit the research
concerning light absorption by magnetic fluids based on
petroleum showed that magnetic fluids can be utilized as
absorbent media for solar energy. Under these circumstances,
in this paper, we extend Goody’s model to take into account
the magnetic force and porous medium. In fact, we study
qualitatively the effect of thermal radiative transfer on the
onset of ferroconvection in a porous medium in the presence
of a uniform vertical magnetic field. We also restrict our
attention to the case in which the absorption coefficient of
the fluid is the same at all wave lengths and is independent
of the physical state (the so-called gray medium
approximation). The equation of radiative transfer is
developed in optically thin approximation and the effect of
scattering is ignored. The results are illustrated graphically.

2.0 Mathematical formulation
Consider a horizontal constant porosity layer of a
ferromagnetic fluid confined between two parallel infinite
boundaries heated from below. The boundaries are assumed
to be perfect conductors of heat. A Cartesian coordinate
system is used with the z-axis vertically upward. The lower
surface at z=–d/2 and upper surface at z=d/2 are maintained
at constant temperatures T1 and To. The fluid between the
boundaries absorbs and emits thermal radiation. We treat the
two boundaries as black bodies. The absorption coefficient
of the fluid is assumed to be the same at all wavelengths and
to be independent of the physical state. Moreover, it is
assumed that local thermal equilibrium exists between the
solid matrix and the saturated fluid.

Schematic of the problem

The system of equations describing the problem at hand
is the following

...  (1)

... (2)

... (3)

... (4)

where  = (u, v, w) is the fluid velocity, 0 is the reference
density,  is the porosity of the porous medium, t is the time,
p is the pressure,  is the fluid density,  is the acceleration
due to gravity, f  is the dynamic viscosity,  is the effective
viscosity, k is the permeability of the porous medium,  is
the magnetic field,  is the magnetic induction, T is the
temperature,  is the thermal expansion coefficient, Ta the
arithmetic mean of boundary temperatures, o is the magnetic
permeability,  is the magnetization, k1 is the thermal
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conductivity, G is the rate of radiative heating per unit
volume, sr is the heat content of the fluid per unit volume, 
is the vector differential operator, (x, y, z) are the spatial
coordinates,  and CV,H  is the
specific heat at constant volume and constant magnetic field.

The relevant Maxwell equations are

... (5)

... (6)

... (7)

Since the magnetization is aligned with the magnetic field
and is a function of temperature and magnetic field, we may
write

... (8)

The magnetic equation of state is linearized about the
magnetic field and the reference temperature to become

... (9)

where  is the magnetic susceptibility and K is the
pyromagnetic coefficient.

The equation of radiative heat transfer is

... (10)

where I( ) is the intensity of radiation along the direction of
the vector , ds is an infinitesimal displacement in the 
direction, Ka is the absorption coefficient of the fluid and PB
is the Planck black-body intensity. The radiative heating rate
is given by

(11)

where the integral is taken over the solid angle and s is the
element of solid angle.

The basic state is quiescent and is described by

... (12)

where the subscript b denotes the basic state.
The quiescent basic state has a solution in the form

... (13)

... (14)

... (15)

... (16)

where Ho is the uniform magnetic field, Mo is the reference

magnetization and . In the quiescent basic state,
the equation (10) of radiative transfer takes the form

... (17)

where 3 is the directional cosine of  in the z-direction.
Equation (17) explains the fact that the intensity of radiation
is increased by emission and decreased by absorption.

In the basic state the energy equation (3) becomes

... (18)

where . Equation (18) is suggestive of the fact that

the heat transfer in the basic state is essentially by conduction
and radiation. If FZ is the z-component of the radiative heat
flux, then we may write

... (19)

and we may write Eq. (18) in the integrated form

... (20)

where C1 is the constant of integration.
Iterative solutions of one-dimensional radiative

equilibrium problems all show that remarkably accurate results
can be obtained by assuming a simple form for the angular
distribution of radiative intensity. Assuming the Milne-
Eddington approximation (Goody, 1956), and using the
radiative heat transfer equation (17), the differential equation
associated with the heat flux can be obtained in the form

... (21)

where 

, and s is the Stefan-Boltzmann constant.
Solving Eq. (21) using the following dimensionless radiative
boundary conditions

... (22)



7 1JOURNAL OF MINES, METALS & FUELS

we obtain the following solution

... (23)

where 

and  and  is

the mean value of  throughout the medium. The radiative
boundary conditions (22) are obtained using the fact that the
molecular conduction ensures continuity of temperature at the
two surfaces. It is advantageous mentioning that f(z*) tends
to unite if either  or  tends to zero independently. Moreover,
if  and  are both greater than unity, the variation of the
basic state temperature is exponential. In other words, the
basic state temperature is no longer linear if the radiation
effect is accounted for. In what follows we study the stability
of the quiescent state within the framework of the linear
theory

3.0 Stability analysis
Let the components of the perturbed physical quantities be

... (24)

where the primes indicate infinitesimally small perturbations
= ' and with  ' being the perturbed magnetic potential.

Substituting (24) into the governing equations, neglecting the
nonlinear terms, incorporating the quiescent state solutions
and eliminating the pressure term gives the following
equations

... (25)

... (26)

... (27)

where . Since Eq. (26) is an integro-

differential equation, we adopt the approximation which is
valid when the fluid medium is optically thin (known as
transparent approximation). For the transparent
approximation, the relation becomes (Goody, 1956)

... (28)

Equation (26) after making use of (28), becomes

... (29)

The normal mode solution for the dependent variables is
given by

... (30)

where l and m are the dimensionless wavenumbers in the x
and y directions respectively and  is the growth rate.
Substitution of (30) into equations (25), (29) and (27) leads to

... (31)

... (32)

... (33)

where  is the overall horizontal
wavenumber. Non-dimensionalizing equations (31) - (33)
using the transformations
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... (34)

we obtain

... (35)

... (36)

... (37)

where  is the Prandtl number,  is the

inverse Darcy number,  is the Brinkman number,

 is the thermal Rayleigh number,

 is the magnetic Rayleigh number and

 is the non-buoyancy magnetization

parameter.
The boundary conditions are (Finlayson, 1970)

... (38)

3.1 STATIONARY INSTABILITY

Stationary instability is characterised by  = 0  and the
associated equations, from Eqs. (35) - (37), are therefore given
by

... (39)

... (40)

... (41)

3.2 OSCILLATORY INSTABILITY

We now examine the validity of the principle of exchange
of stabilities (PES) for the problem at hand by means of the
Galerkin method. Multiplying equations (35)-(37) by W,   and
 respectively, integrating the resulting equations with
respect z between the limits z = – 1/2 and z = 1/2, taking

,  and
 (in which W1, 1 and 1 are trial

functions) leads to the following system of equations:

... (42)

... (43)

... (44)
where

and the inner product is defined as .

Assuming  = i  with  being the frequency of oscillations,
the criterion for the existence of the unique solution of the
system of equations (42)-(44) leads to the expression

R = R1+iR2
where
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As the Rayleigh number R is real, we must have R2=0.
Clearly =0. This means that the PES is valid for the present
problem and the possibility of existence of oscillatory
instability is ruled out. Hence the stationary instability is the
preferred mode.

4.0 Method of solution
The system comprising Eqs. (39)-(41) and the homogeneous
boundary conditions (38) is an eigenvalue problem with
being the eigenvalue. An approximate solution of this
eigenvalue problem can be obtained by the well-known
Galerkin method (Finlayson, 1972). To this end, we let

where Ai, Bi and Ci are constants and the basis functions Wi,
i and i are represented by a power series satisfying the
respective boundary conditions. Appealing to the Galerkin
method which demands the residuals be orthogonal to the
following system of homogenous algebraic equations

... (45)

where

 

The trial functions chosen are ,

 and. On applying the

Galerkin method to the system (45) of equations, we would
obtain the critical Rayleigh number and the corresponding
critical wavenumber.

5.0 Results and discussions
The influence of thermal radiation on the onset of Darcy-
Brinkman ferroconvection in an absorbing and emitting
ferromagnetic fluid layer in the presence of a vertical uniform
magnetic field is studied. The boundaries are assumed black
bodies and the optical properties of the transparent
ferromagnetic fluid are independent of the wave length of
radiation. It is assumed that the fluid and solid matrix are in
local thermal equilibrium. Realistic hydrodynamic boundary
conditions and general boundary conditions on the magnetic
potential are considered. The principle of exchange of
stabilities is shown to be valid by means of the single term
Galerkin method. The critical values pertaining to the
stationary instability are obtained using the higher order
Galerkin method. As regards the values of radiative
parameters  and , it is to be noted that large radiative
effects are more likely if a gas rather than a liquid is used as
a fluid. In view of this, large values of  and  have been
overlooked in the problem at hand.

To get a better understanding of the results obtained, we
examine the basic state temperature distribution which
throws some light on the effect of radiative heat transfer on
the stability of the system. Figs.1 and 2 are plots of z versus
f(z) for different values of  and  respectively. We observe
that the basic state temperature profile becomes exponential
and nonlinear as  and  increase and it is symmetric about

Fig.1: Basic temperature profiles for different values of the
conduction-radiation parameter .
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Fig.2: Basic temperature profiles for different values of the
absorptivity parameter .

Fig.3: Plot of Rc as a function of N for different values of  and
Da–1=5, =5, =5, M3=3, =2.

Fig.4: Plot of Rc as a function of N for different values of Da–1 and
=3, =5, =5, M3=3, =2.

Fig.5: Plot of Rc as a function of N for different values of  and
Da–1=5, =3, =5, M3=3, =2.

Fig.6: Plot of Rc as a function of N for different values of  and
Da–1=5, =3, =5, M3=3, =2.

Fig.7: Plot of Rc as a function of N for different values of M3 and
Da–1=5, =3, =5, =5, =2.
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TABLE 6: DEPENDENCE OF ac WITH N FOR DIFFERENT VALUES OF  AND

FOR Da–1=5, =3, =5, =5, M3=3

N ac

 = 1  = 3  = 5

0 3.445 3.445 3.445
20 3.446 3.446 3.446
40 3.447 3.447 3.447
60 3.448 3.448 3.448
80 3.449 3.449 3.449
100 3.450 3.450 3.450

TABLE 5: DEPENDENCE OF ac WITH N FOR DIFFERENT VALUES OF M3 AND

FOR Da–1=5, =3, =5, =5, =2.

N ac

M3 = 1 M3 = 5 M3 = 10

0 3.445 3.445 3.445
20 3.446 3.446 3.445
40 3.448 3.446 3.446
60 3.449 3.447 3.446
80 3.450 3.448 3.447
100 3.451 3.449 3.447

TABLE 1: VARIATION OF ac WITH N FOR DIFFERENT VALUES OF  AND

Da–1=5, =5, =5, M3=3, =2.

N ac

 = 1  = 3  = 5

0 3.508 3.445 3.428
20 3.510 3.446 3.429
40 3.513 3.447 3.429
60 3.515 3.448 3.430
80 3.517 3.449 3.431
100 3.520 3.450 3.431

 TABLE 2: VARIATION OF ac WITH N FOR DIFFERENT VALUES OF Da–1

AND =3, =5, =5, M3=3, =2.

N ac

Da–1=0 Da–1=5 Da–1=10

0 3.398 3.445 3.530
20 3.400 3.446 3.530
40 3.401 3.447 3.531
60 3.402 3.448 3.532
80 3.403 3.449 3.533
100 3.404 3.450 3.533

TABLE 3: DEPENDENCE OF ac WITH N FOR DIFFERENT VALUES OF  AND

Da–1=5, =3, =5, M3=3, =2.

N ac

= 1 = 5  = 10

0 3.361 3.445 3.418
20 3.362 3.446 3.419
40 3.363 3.447 3.420
60 3.364 3.448 3.421
80 3.365 3.449 3.422
100 3.366 3.450 3.423

TABLE 4: DEPENDENCE OF ac WITH N FOR DIFFERENT VALUES OF  AND

FOR Da–1=5, =3, =3, M3=3, =2.

N ac

= 1 = 5 = 5

0 3.185 3.445 3.753
20 3.185 3.446 3.754
40 3.186 3.447 3.754
60 3.187 3.448 3.755
80 3.188 3.449 3.756
100 3.188 3.450 3.756

Fig.8: Plot of Rc as a function of N for different values of  and
Da–1=5, =3, =5, =5, M3=3

the line z=0. This symmetry of the basic temperature profiles
is largely responsible for the stabilizing effect of both  and
.

The variation of Rc with N for different values of , Da–

1, , , M3 and  is exhibited in Figs.3 through 8 respectively.
The destabilizing influence of the magnetic parameters N and
M3, and the stabilizing influence of the porous parameters 
and Da–1 are qualitatively in agreement with the results of
the second sound problem. The parameter  signifies the
temperature in the equilibrium state, while  is the
characteristic of absorption coefficient and distance between
the horizontal planes. The stabilizing influence of  and  is
evident from Figs.5 and 6. This is due to the fact that
radiative transfer tends to damp out any motions which may
arise due to the heat transfer from hotter to colder parts of
the magnetic fluid. As a result, the effect of thermal radiation
is to inhibit Darcy-Brinkman ferroconvection. Noticeably, the
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destabilizing nature of magnetic forces is not diminished by
the effect of  and the opposite is true for the parameter .
From Fig.8, it is evident that the effect of increasing  is to
increase the value of Rc and thus it delays the onset of
ferroconvection. However, the stabilizing effect of  is
negligibly small.

Furthermore, we infer from Tables 1 through 6 that
convection cell size gets affected by N, , Da–1, ,  and
M3, but insensitive to the variation in . In the limiting case
of  =N=Da–1=0 and =1, one obtains the classical values
of ac = 3.117 and and Rc = 1707.76 (Chandrasekhar, 1961).
The results of this problem have implications for the
utilization of magnetic fluids as heat carriers in the capture
of solar energy.

6.0 Conclusions
 Darcy-Brinkman instability of a ferrrofluid with the effect of
thermal radiation is studied using the technique of small
perturbations. The analysis has led to the following
conclusions:
• Basic temperature profiles are nonlinear and symmetric

with respect to the variations in the radiative parameters
 and . This symmetry is largely responsible for the
stabilizing effect of both radiative parameters  and .

• The destabilizing nature of magnetic forces is not
diminished by the effect of  and the opposite is true for
the parameter .

• Nonlinearity of magnetization diminishes the
ferroconvection threshold and this effect becomes less
strong when M3 is significantly large.

• The stability of the ferromagnetic fluid increases with an
increase in the value of the inverse Darcy number and
the Brinkman number.
The study throws light on the effective control of

ferroconvection in the presence of porous medium. The
results of the study could be exploited to augment or
suppress ferroconvection and to corroborate the findings of
laboratory based heat transfer experiments involving
ferromagnetic fluids.
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