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The fourth industrial revolution has introduced several
rapidly progressive technologies like big data analytics, the
internet of things, simulation, autonomous robots, cloud
computing and artificial intelligence. It has reduced the
effort and processing time in the manufacturing/production
industry through new emerging technologies. In this study,
artificial intelligence has been adopted to forecast the
stability of multi bench dump slope structure with ease and
minimum interval. The supervised machine learning method-
based Decision Tree, Gradient Boosting, Multi-variate
Nonlinear, Random Forest and Support Vector Machine soft
computing models are deployed to assess the dump slope
stability. Numerical modelling has been used to generate
error-free datasets for the training and testing of models.
Hyperparameter tuning has been done to optimize the
performance of the machine learning models. The
performance of the models has been analyzed based on the
Coefficient of Determination and the Root Mean Square
error. The study outcomes reveal that the Multivariate
Nonlinear regression model predicts the stability of dump
slope structure with better accuracy for the considered
datasets. It yields a coefficient of determination of 95.4%,
while the root mean square error is only 4.6%.

Keywords: Dump slope stability, industry 4.0, numerical
modelling, artificial intelligence

1.0 Introduction

The contribution of opencast mines has increased
significantly from 89.70 to 94.44% of the total coal
production in our country during the period of 2010 to

2020 (Provisional Coal Statistics Report 2020). The volume of
overburden (OB) has also generated in huge volume, and it
has been increased from 1038.02 to 1754.06 million cubic
meters during the same period. Timely acquisition of land and
urbanisation have raised the problem of OB dumping space.
Hence, safe dumping of such huge OB and maintenance of
giant dump slope structure in a limited space is a significant

challenge for the mine operators.
Waste dump of Dagushan Iron Mine, China and

Goonyella mine, Australia, failed due to clay and moisture-
sensitive material at the basement of dump structure,
respectively (Wang and Chen, 2016; Richards et al., 1981).
Ouyang et al. (2017) observed that excess pore water pressure
could cause a dynamic process of the landslide during the
construction of a waste landfill at Guangming, Shenzhen,
China. Seasonal fluctuations of the porewater pressure caused
instability in the waste dump of European lignite mines
(Rahardjo et al., 2007; Rahimi et al., 2010). Several internal (like
the geometry of dump structure and geotechnical properties
of dump material) and external (like seismicity, rainfall,
surcharge loading) factors affect the stability of dump slope
structure. Some of the major accidents due to dump slope
failure which caused environmental damage and significant
loss of life, production and machinery like Aberfan, Wales,
UK (1966), Buffalo Creek, USA (1972), Quintette Mrmot, BC,
Canada (1985), Guangming, Shenzhen, China (2015), Rajmahal,
ECL, India (2016) (Bishop, 1973; Fahey et al., 2002; Blight and
Fourie, 2005; Ouyang et al., 2017; Zhan et al., 2018;
Satyanarayana et al., 2017). Therefore, dump slope stability
analysis has become a central attention point for the mine
management to avoid losses due to dump slope instability.

Initially, the limit equilibrium method was proposed to
analyze the stability of slope structure. Several versions of
limit equilibrium based methods are present, like Fellenius,
1936; Janbu, 1954; Bishop, 1955; Morgenstern and Price,
1965; Spencer, 1967; Generalized Limit Equilibrium (Lam and
Fredlund, 1993) and two wedge model (Ulusayet al., 1996).
These methods are widely used due to their accuracy,
simplicity and speed (Duncan et al., 2014). However, it
possesses several shortcomings. For example, it has limited
applicability with regard to complex slope structures. It also
disregards the level of compaction and the stress strain
distribution, thus estimating unrealistic FoS in spite of lateral
movements (Pasternack and Gao, 1988; Low, 1997; Pascoe et
al., 1998; Abramson et al., 2002).

Currently, numerical modelling is used as a primary tool
to overcome the shortcomings of the limit equilibrium method.
Although it involves complex and repetitive computation
processes with prolonged solution time, it provides accurate
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results with insight into the associated phenomena. It is
expensive as well and requires sound knowledge to perform
the analysis (Abdalla et al., 2015; Koopialipoor et al., 2019).
In recent years, several slope stability problems have been
assessed through artificial intelligence with high accuracy
(Lin et al., 2018; Ferentinou and Fakir, 2018; Feng et al., 2018;
Kothari and Momayez, 2018; Nguyen et al., 2020).

In contrast to the above, data driven analysis methods are
less time consuming, robust, flexible and inexpensive (Das et
al., 2011; Erzin and Cetin, 2013; Tinoco et al., 2018).
Koopialipoor et al. (2019) analyzed the stability of
homogeneous slope structures in static and dynamic
conditions with hybrid soft computing methods. Artificial
neural network (ANN) method was combined with imperialist
competitive algorithm (ICA), genetic algorithm (GA), particle
swarm optimization (PSO) and artificial bee colony (ABC). The
PSO-ANN model possessed the highest accuracy compared
to other models. Qi and Tang (2018) evaluated the stability of
slope structure using logistic regression (LR), decision tree
(DT), random forest (RF), gradient boosting (GrdB), support
vector machines (SVM) and multilayer perceptron (MLP)
neural network. The study showed that cohesion was an
influential primary variable, and the SVM model predicted the
stability of slope structure with the highest precision. Kwag
et al. (2020) adopted SVM, ANN and Gaussian Process
Regression (GPR) to assess the seismic performance of slope
structure. It was observed that the difference between the
SVM and the nonlinear regression analysis methods was
negligible. Moreover, there was a significant improvement in
the performance of ANN and GPR, but GPR was relatively
more accurate than ANN. Moayedi et al. (2019) examined
slope stability through multiple linear regression (MLR),
multilayer perceptron (MLP) neural network, radial basis
function (RBF) regression, improved SVM using a sequential
minimal optimisation algorithm, lazy K-nearest neighbour
(KNN), random forest (RF) and random tree models. The
coefficient of determination, mean absolute error, root mean
square error, relative absolute and root relative squared errors
were used to evaluate the efficiency of models. The result
showed that RF had the highest predictability than other
intelligent models. Numerous soft computing methods have
also been successfully applied to assess the stability of slope
structures like extreme learning machine, least squares
support vector classification, functional networks, naive
bayes, chaotic neural network, feed forward neural network,
back propagation neural network, adaptive neuro-fuzzy
inference system (Samui, 2013; Tinoco et al., 2018; Feng et
al., 2018).

In this study, the stability of the multibench dump slope
structure is assessed through supervised machine learning
methods. Decision tree (DT), gradient boosting (GrdB),
multivariate nonlinear (MNL), RF and SVM soft computing
models are used for regression analysis. The performance of
each model is evaluated based on the coefficient of

determination, and root mean square error. The stability state
of the dump slope structure (i.e., FoS) is considered as a
dependent feature, and geotechnical parameters (density,
cohesion, friction angle) and geometrical parameters (total
dump height, bench height, bench width, bench slope angle)
are assigned as independent features. Response of the
models is enhanced by generating accurate datasets using
numerical modelling and model optimisation through hyper
parameter tunnelling.

2.0 Artificial intelligence
Artificial intelligence (AI) enables the machine, especially
computer systems, to perform intellectual tasks like humans
by simulating human intelligence in the machine. It helps the
machine to learn from the experience. AI can perform several
tasks, like learning, planning, reasoning, perception, speech
recognition, forecasting, and so on. In this study, AI has been
used to predict the stability of dump slope structure using
DT, GrdB, MNL, RF and SVM soft computing methods.

Each soft computing model possesses a unique way to
establish the relationship between dependent and
independent features. The decision tree forecasts the value
of the dependent feature by identifying and establishing rules
inferred from the whole datasets. Based on ‘if’ and ‘else’
conditions, the working area datasets are divided into treelike
structures. DT predicts the dependent features with accuracy
at the optimum number of branches of trees (Yeon et al., 2010;
Gupta et al., 2019). The gradient boosting model combines
many weak models and strengthen them to provide a strong
model. Bias or variance of the weak model is reduced by
boosting the process (Kotu and Deshpande, 2015). The
multivariate nonlinear model uses the least square technique
with the minimisation of the sum of errors. This model
establishes the relationship between dependent and
independent parameters (Moayedi et al., 2019). Random forest
consists of several DT model and its prediction is based on
the most forecasted output level of the base trees (Gashler et
al., 2009; Wu et al., 2014). The support vector model identifies
the hyperplane by transforming the original input space into
a higher dimensional feature space to forecast the results (Bui
et al., 2016; Bui et al., 2019).

3.0 Methodology
Strength reduction method based FLAC 2D software was
utilised to generate the errorfree datasets for the training and
testing of soft computing models. Total 158 multi bench dump
slope structures were simulated. Datasets were divided in the
proportion of 7:3 where 70% of datasets were used for training
the model and 30% of the datasets were used to test the
model performance. Coefficient of determination and root
mean square error were the base parameters to examine the
performance of models. The coefficient of determination (R2)
measures the variation in the dependent parameter that can
be accounted by the model. It can range from 0 to 1. Generally,
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models were trained through 70% of
datasets, and the performance of each
model was evaluated using the
remaining 30% of datasets by
comparing the difference between
actual and predicted value. Fig.2
shows that MNL has the highest R2

value (i.e. 95.4%) followed by SVM,
GrdB, RF and DT, respectively. The
difference between the actual and
predicted value is high in DT model
and low in MNL model, as shown in
Fig.3. GrdB, RF and SVM have a high
percentage of error compared to MNL.

Figs.4 to 8 show the difference
between the actual and predicted
value of FoS in testing datasets of
different machine learning models.In
DT (Fig.4) and RF (Fig.7), the
predicted value coincided with the
actual value in very few casesonly.
The prediction capability improved to
some extent in the case of Grd B and
SVM (Fig.5 and 8). The MNL model
forecasted the FoS value closer to the
actual value than the other models
(Fig.6). All these plots indicated that
the proportion of underestimated
values was higher than overestimated
values against the actual values of
the FoS. In DT and SVM, the
proportion of underestimated values
were slightly higher, whereas, in GrdB
and RF, very few cases were

Fig.1: Distribution summary of input and output features

it is observed that the model predicts the dependent
parameter precisely when the R2 value is closer to 1. Root
mean square error (RMSE) shows the average error between
the actual and the indicated value.

4.0 Results
Total dump height, bench height, bench slope angle and
bench width were considered in geometrical parameters and
cohesion, internal angle of friction and density were included
in geotechnical parameter. The geotechnical and geometrical
parameters were the independent features and FoS was the
dependent feature. The range and distribution of each feature
are shown in Fig.1 in the form of a box plot. The minimum,
maximum, different percentiles, mean, median and outliers of
each parameter are shown in the box plot. Total dump height
and bench width are free from outliers, while bench height,
slope angle, and cohesion have only one outlier. However,
friction angle, density and FoS have significant outliers.

DT, GrdB, MNL, RF and SVM supervised machine learning Fig.2: Coefficient of determination of machine learning models
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Fig.3: Root mean square error of machine learning models

Fig.4: Decision tree based actual vs. prediction value

Fig.5: Gradient boosting based actual vs prediction value Fig.8: Support vector based actual vs prediction value

Fig.7: Random forest based actual vs prediction value

Fig.6: Multivariate nonlinear based actual vs prediction value
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overestimated. In MNL, both overestimated and
underestimated values were present, but significant
predictions coincided with the actual value.

The performance of each soft computing model was
optimised through hyper parameter tuning. Table 1 shows
some of the major governing hyper parameters of DT, GrdB,
RF and SVM models. The remaining hyper parameters,
including the MNL model, were set to their default value.
Max depth is the depth of a tree where all leaves are pure.
The learning rate shrinks the contribution of each tree. The
n_estimators provide the number of boosting stage during
the analysis process. The kernel is used to solve the lower
dimension data into higher dimension due to a set of
mathematical function. “C” is the regularisation factor.
Epsilon specifies the epsilontube where no penalty
occursduring the training loss function with points
forecasted within a distance epsilon from the actualvalue.

5.0. Discussion
Scientific studies regarding the stability analysis of dump
slope structure are continuously evolving to avoid
instability and provide accurate results in minimum time with
less effort. Currently, numerical simulation provides the
result with more accuracy and insight. However, it is a time
consuming, expensive analysis method and requires sound
knowledge. Therefore, in alignment with the digital
transformation of the production industry and value creation
process, this study has generated errorfree datasets through
numerical modelling analysis method and forecasted the
stability of multi bench dump slope structure using artificial
intelligence. It was noted that total dump height and bench
width furnishes additional insight into the instability
analysis of giant dump slope structures (Gupta et al., 2018
and 2019). Consequently, total dump height and bench width
parameters were also incorporated along with the already
proven stability governing parameters (bench height, bench
slope angle, cohesion, density and frictionangle) (Lin et al.,
2018; Qi and Tang, 2018; Luo et al., 2019; Chebrolu et al.,
2020). The application of artificial intelligence reduced the
analysis time significantly compared to numerical modelling.
All machine learning models performed well with a minor
error. The performance of the model depends on the
accuracy of training datasets. In addition to this, hyper
parameter tuning plays a crucial role in deciding the optimal
performance of the model.

6.0 Conclusions
In this study, the stability of the multi bench dump slope
structure has been assessed using the supervised machine
learning method. Total dump height, bench width, bench
height, bench slope angle, cohesion, friction angle and
density parameters have been considered for instability
analysis. Among the DT, GrdB, MNL, RF and SVM soft
computing models, MNL and SVM had a coefficient of
determination of more than 90%, but the error of SVM was
twice the error of MNL. DT model had the lowest R2 and
RMSE value. Therefore, MNL soft computing method is
suggested as an efficient model to forecast the instability of
multi bench dump slope structure for the considered range of
input parameters and analysis method. This trained soft
computing model function can be used to assess the stability
of the dump slope structure with ease.
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