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Depillaring of coal seams is of prime importance for coal
mining industry in view of depleting superior quality coal
reserve and increasing import of foreign coal. Depillaring
in conjunction with caving is the most hazardous operation
due to sudden roof fall. Some researchers have focused their
work on roof fall risk assessment using statistical methods
with a view to safety of men and machinery and to minimize
accidents, down time and loss of production. Extensive
research has not been done to predict roof caving sequence
which is the basic requirement for successful caving
operation for achieving production with zero harm
potential. Roof caving is the result of interactions of all
geotechnical and mining parameters including extraction
area which is its main cause and contributory parameter. In
this research, Random Forest, a supervised ensemble
machine learning algorithm along with grid search and
cross-validation is used to process the interactions among
various parameters and to predict the sequential occurrence
of roof caving and characterize the same as local or main
fall with considerable and reliable accuracy.

Keywords: Depillaring with caving, grid search, feature
selection, local fall, machine learning, main fall, random forest,
roof fall risk.

1.0 Introduction

Indian coal seams are mostly developed on bord and pillar
system in which 20-30% bord-coal has been mined out.
However, rest 70-80% of coal deposits are still locked in

pillars (Dixit and Mishra, 2010), waiting for extraction in most
of the mines, due to various geo-technical reasons. Extraction
of superior quality coal locked in pillars, by depillaring is vital
for Indian mining industry. The semi-mechanized depillaring
with drilling and blasting for coal winning, side discharge

The prediction of caving sequence in bord and
pillar workings using Random Forest algorithm

RAM BILASH PRAJAPATI
RABINDRA KUMAR SINHA

R.N. GUPTA
SIKANDAR KUMAR

and
DIVYA

Messrs. Ram Bilash Prajapati, Rabindra Kumar Sinha and Sikandar Kumar,
Department of Mining Engineering, Indian Institute of Technology
(ISM), Dhanbad, Jharkhand, 826004, Dr. R.N. Gupta, Former Director
of National Institute of Rock Mechanics, Bangalore, Karnataka 560070
and Ms. Divya, Mahatma Gandhi Medical College and Hospital,
Jamshedpur, Jharkhand, 831012. E-mail: rbprajapati2010@gmail.com /
rksinha@iitism.ac.in / sikandarbit2k11@gmail.com /
guptarn1942@rediffmail.com / divya15nov@gmail.com

loader or load haul dumper for coal loading at the face and
haulages for coal evacuation from face to the surface is being
practiced (Singh et al. 2008). However, production,
productivity and safety cannot be enhanced by this
operation. (Singh et al., 2011). Support at goaf edge is
provided to prevent roof falls of competent roof inside the
goaf during the depillaring operation (Ghasemi et al., 2012).
Roof bolt breaker line support is provided in place of
conventional breaker line support (Mandal et al., 2006) in
mechanized depillaring. Gupta and Prajapati (1997) have
recommended use of latterly confined fully grouted roof bolts
for better efficiency.

 High percentage of extraction during slicing initiates roof
instability which makes the active mining area almost
inaccessible and difficult for manual instrumentation and
monitoring in and around slicing faces (Singh, et al., 2011).
Local fall takes place within twenty-four to forty-eight hours
after extraction of coal and withdrawal of support in the goaf
area. It does not extend up to the surface and affects only a
few meters of the strata above the coal seam whereas the main
fall affects the surface and takes place long after local fall.
The strong and massive sandstone roof strata of Lower
Gondwana age aggravates strata control problem due to the
increase in void dimension caused by advancement of line of
extraction. This may induce dynamic loading over
surrounding pillars during caving of the strata, leading to
pillar spalling and goaf edge encroachment.

Chase et al. (2002) and Mark (2010) have given guidelines
for proper design of depillaring panels in deep mines including
suggestions for barrier pillars to isolate active panels from
nearby goaf. Mark et al. (2003) have introduced a risk factor
checklist that can evaluate the overall level of roof fall risk
and possible ways to reduce sudden roof fall.

Accident analysis (DGMS, 1993) reveals that depillaring
in conjunction with caving is hazardous and challenging
activity in coal mining due to roof fall accidents, mostly at or
near the working faces which has been addressed by several
researchers. Ghasemi et al.(2012) have considered 15
parameters which affect the roof fall in depillaring and
developed statistical relation based on probability and
consequences, , where, Rrf is roof
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fall risk, PFi, probability factor and Wi is weight of ith

parameter for risk assessment of roof fall. Maiti and Khanzode
(2009) have developed model of relative risk for roof and side
fall accident based on statistical analysis of potential fatalities
(PF), relative risk fatality (RRF) and safety measure
effectiveness (SME). (Duzgun and Einstein (2004) have used
statistical methods with 1141 roof fall dataset for risk
assessment using the formula, Risk = HazardConsequences
or R = P [Roof fall]  Consequences, where, R = Risk of roof
fall in mine and P[Roof fall] = roof fall occurrence probability
in a certain period of time. Consequences may involve
fatalities, injuries, disabilities, equipment breakdown,
downtime, etc. They compared two alternative actions “do
nothing” (status quo) and “support improvement”.

Mohammadi et al. (2020), have considered nine parameters
and used fuzzy integrated multi-criteria decision-making
method after assigning weights and corresponding ratings for
determination of cavability index (CI). Equivalent immediate
roof strength (EIRS) is the thickness-weighted average of roof
strata uni-axial compressive strength, given by,

, ti = thickness of the stratum (m), = UCS of
the stratum (MPa) and number of stratums in the immediate
roof. And cavability index (CI),

where wi, = Weigth of the ith parameter; Pi = Rate of ith

parameter; Pmax = Maximum rate of ith parameter. Immediate
roof has been classified on the basis of Cavability Index (5-
100) in I-V categories.

Empirical formulations based on in situ measurement of
strata behaviour, is very difficult due to various geotechnical
and economic reasons. This is why after strata mechanics
analysis of many accidents, scientists have concluded “Act
of God” as the cause of accidents.

To address these issues machine learning technique,
which can handle interaction of all the available parameters
simultaneously has been used for analysis and prediction of
systematic roof fall in depillaring districts. Random Forest, an
ensemble tree-based supervised machine learning algorithm,
suggested by Breiman (2001) which averages predictions
over many individual random trees is applied. As the number
of tress is very large, this allows for random selection of trees
along with random variable selection, thus the bias is reduced
and the performance is superior to other bagging algorithms
and decision trees (Motwani, 2020). The algorithm is invariant
to data scale, hence parameters with different units can be
used directly. The algorithm is highly robust to outliers and
noises in data due to its property of randomness. In this
method a number of weak models are combined to form a
powerful model by aggregating their “votes”. In addition, it
also provides useful estimates of correlation, strength and
variable importance (Breiman, 2001). Due to the
aforementioned advantages, Random Forest algorithm is

preferred in various fields over other machine learning
algorithms like Bagging, SVM, Decision Trees etc. It has been
applied to predict rock type in drill hole (Sarantsatsral et al.,
2021), coal and gas outburst disasters (Harshitha et al., 2020),
detect various diseases (Jackins et al., 2021) and for selecting
critical features for data classification (Chen et al., 2020).

Mathematically, it takes a training dataset as X =
{(x1,y1),(x2,y2), ..., (xn,yn)}.The classifier randomly draws a
subset of samples (xi,yi–) called bootstrap aggregation then a
tree Tb is grown over the subset of samples, till the minimum
node size nmin is reached, by looping over the following steps:

(i) A subset of m variables is randomly selected from a
set of p variables (m<p),

(ii) The best split-point is picked.
(iii) The node is split into two daughter nodes.

An ensemble of {Tb}1
B trees is generated. As each tree is

formed in bagging so they are identically distributed. For a
classification problem,  if is the class prediction of the
bth Random Forest tree, then the output of the tree will be

 = majority vote  .

2.0 Case study of depillaring panels in mines of
Central Coalfield Ltd.

2.1 GEO-MINING DETAILS OF DHORIKHAS COLLIERY

DhoriKhas Colliery is located in East Bokaro coalfield in
Bokaro district of Jharkhand. Dhori block lies on the main
synclinal basin of East Bokaro coalfields which is covered by
Talcher, Karharbari and Barakar formations of Lower
Gondwana. The Barakar Formation of Lower Gondwana group
occupies a major part of the minefield area. It consists of grey
shale, medium to coarse grained sandstone and thick coal
seams up to 61m. Exposures of Barakar rocks in this area are
found in hill slopes, quarries, nallas and railway cuttings.

The mine is bounded by latitudes 23o46'00" to 23o46'53’’
North and longitudes 86o00'22’’ to 86o01'22'' East. There are
two units namely 4, 5 and 6 and 7 and 8 inclines, which have
several seams. Karo special seam-III, is the main seam of
thickness of 2.5m and gradient 1 in 6. It is being depillared by
caving with diagonal line of extraction.

2.2 GEO-MINING DETAILS OF BHURKUNDA COLLIERY

Bhurkunda colliery lies in the Barka Sayal area of Central
Coalfields Ltd. in South Karanpura coalfields in western part
of Damodar valley in Ramgarh district of Jharkhand. The area
forms a gently sloping ground adjoining Damodar river and
is 348.5m above mean sea level (MSL). The mine lies within
latitudes 23o39'00" to 23o41'00" North and longitudes
85o21'00" to 85o23'00" East. The stratigraphy and offset plan
of Bhurkunda colliery are shown in Table 1 and Fig.1
respectively.

A semi-mechanized depillaring with caving having
diagonal line of extraction, using universal drilling machine,
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side discharge loader, haulages and full column grouted roof
bolting system is being practiced. For strata monitoring load
cell, tell tale and convergence recorder are used in both the
mines.
2.3 DATA COLLECTION

Detailed data from both the collieries have been collected
in a suitable format for application of soft computing tool. In
actual model, the names of parameters have been used but
for ease of depiction these parameters have been renamed as
(h1-h36):

h1 Quantity of coal in the panel (t)
h2 Seam thickness (m)
h3 Gradient of dip (degree)
h4 Average thickness of cover/depth (m)
h5 Average gallery width (m)
h6 Pillar number
h7 Length of pillar (m)
h8 Width of pillar (m)
h9 Length of depillaring panel (m)
h10 Width of depillaring panel (m)

h11 Sandstone percentage (%)
h12 Coal left in immediate roof (m)
h13 Coal layer thickness value (LTV) (cm)
h14 Coal SFI value
h15 Coal slack durability index (SDI, %)
h16 Coal UCS (kg/cm2)
h17 Coal GWS value (mL/min)
h18 Total rating of coal
h19 Thickness of immediate rock (m)
h20 Rock LTV (cm)
h21 Rock SFI
h22 Rock SDI (%)
h23 Rock UCS (kg/cm2)
h24 Rock GWS value (mL/min)
h25 Total rating of rock
h26 Combined rock mass rating (RMR)
h27 Rock load (t/m2)
h28 Tensile strength (kg/cm2)
h29 Poisson’s ratio
h30 Young’s modulus (GPa)
h31 Area of fall (m2)
h32 Days
h33 Rock type shale (S)
h34 Rock type shaly sandstone (SH SST)
h35 Rock type sandstone (SST)
h36 Fall (Model 1 – No fall (0) or Fall (1),

Model 2 – Local fall (0) or Main fall (1)).
where, UCS - Uni-axial compressive strength.
SFI - Structural feature Indices
GWS - Groundwater seepage

3.0 Proposed methodology
In the current research, two different models are prepared, to
predict the occurrence of a caving sequence in underground
coal mine (Model 1) and another to differentiate between local
and main fall (Model 2). The input parameters are chosen after
extensive literature review and relevant data is collected.

During the data-preprocessing phase data has been
cleaned and any missing values identified have been
dropped. The categorical variables are converted to dummy
variables. The data is then ready to be fed into the classifier.
Approximately, 30% of the data has been kept aside for testing
the model.

Two random forest classifier models are built (Fig.2), after
hyperparameter tuning by grid search and fit on its respective
training dataset and cross-validated. Then, the models have
been tested on their respective test data.

TABLE 1: STRATIGRAPHY OF THE MINE

Name of Thickness Parting Status
seam (m) (m)

Kurse 2.74 Exhausted
9.35

Upper Nakari 3.6 Exhausted
13.87

Lower Nakari 1.82 Exhausted
17.98

Upper Semana 4.27 Exhausted
19.12

Lower Semana 2.84 Partially extracted
26.34

Hathidari 3.75 Being depillared
18.54

Bansgarha 4.27 Being depillared

Fig.1: Bhurkunda ‘B’ colliery offset plan of panel-III,
Hathidari seam
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3.1 PARAMETERS AND DATASET OF MODELS

Brief overview of correlation among parameters can be
visualized from scatter plots (Fig.3,4,5) and pearson
correlation plot (Fig.6). The dataset for prediction of
occurrence of “Fall” (Model 1), has 323 data of which 118 data
of “No fall (0)” and 205 data of “Fall (1)”. The dataset for
prediction of occurrence of either local or main fall (Model 2),
has 207 data , containing 120 data of “Local fall (0)” and 87
data of “Main Fall (1)” (Table 2).
3.2 TRAINING OF MODEL

The data is split in the ratio of 70:30 for training and
testing. 5-fold cross validation has been performed during the
process. As there are several hyperparameters in a Random
Forest model which can be tweaked to enhance the overall
accuracy. This necessitates the use of grid search for
hyperparameter selection (Table 3) this has been kept same
for both the models during the whole training process, the
chosen set is given in Table 4.

The importance of different parameters used during
training of models are analyzed. The feature importance bar

plot of model 1 (No fall (0) or fall (1)) (Fig.7) shows that the
classifier gives importance to area, h31(0.414), days, h32
(0.277), pillar number, h6(0.022), SDI, h15(0.006).

The feature importance bar plot of model 2 (Fig.8) (local
fall (0) or main fall (1)) shows that the classifier gives
importance to area (0.409), days (0.154), tensile strength
(0.037), rock UCS value (0.037).

Fig.2 The procedure of model creation

Fig.3: The plot between area and days shows that a fall of larger
area, takes a longer time to occur

Fig.4: The plot depicts that as the average gallery width increases,
falls of a larger area usually occurs
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After analyzing the feature importance plots of the two
models, an attempt is made to understand the complex
interplay of these features and their effect on model
performance. For this, the last eight least important features
have been dropped out from training and test dataset of both
the models then grid search and cross-validation with same
specifications is run. The performance of the resulting models
is analyzed and compared to the corresponding previous
models.

The set of optimum hyperparameters obtained after
removing the last eight least important features of
corresponding models. (Table 5)

The feature importance after removing the last eight least
important features (coal SFI; h14, coal GWS; h17, rock GWS;
h24, rocktype S; h33, SH-SST; h34, SST; h35, coal left in roof;
h12, coal UCS; h16) of model 1 (fall (0) or no fall (1)) is given
in (Fig.9)

Feature importance after removing the last eight least
important features (coal SFI; h14, coal GWS; h17, rock GWS;
h24, rocktype S; h33, SH-SST; h34, SST; h35, coal left in roof;
h12, sandstone %; h11) of model 2 (local fall (0)/main fall (1))
is given in Fig.10.

Fig.5: The plot depicts that as the rock SDI increases, the area of
fall decreases as high SDI weakens the rock

Fig.6: The Pearson correlation plot shows that occurrence of local and main fall is highly correlated with area, h31(0.59), length of pillar,
h7(0.18) and negatively correlated with tensile strength, h28(-0.31) and sandstone %, h11(-0.16)
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3.3 RESULT AND ANALYSIS

3.3.1 Training score: The score of the models when tested
over the training dataset itself is enlisted in Table 6.

From, the training score it is evident that for Model 1,
there is a decline of (-0.0045), whereas in case of Model 2
there is an increase in training score by +0.0071.
3.4 CONFUSION MATRIX

The confusion matrix represents the following information
(Table 7):

This helps in calculating the accuracy, precision, recall,
true positive rate and false positive rate and f1 score of the
model created which together depicts the generalization

TABLE 3: HYPERPARAMETER SPACE

Hyperparameters Grid values

n-estimators 200, 500, 700
Maximum features auto, sqrt, log2
Maximum depth 15, 18, 20
Min sample split 2,5
Min sample leaf 1,2
Criterion gini, entropy

TABLE 4: THE OPTIMAL GRID VALUES

Hyperparameters Model 1 (no fall Model 2 (local fall
(0)/fall (1)) (0)/ main fall (1))

n-estimators 200 700
Maximum features sqrt Sqrt
Maximum depth 20 20
Min sample split 5 5
Min sample leaf 1 2
Criterion entropy gini

Fig.7: Feature importance of Model 1 (fall or no fall)
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Fig.8: Feature importance of Model 2 (local or main fall)

Fig.9: Feature importance of Model 1 (reduced features)

capability of the model and aids in evaluation of the model
(Goutte and Gaussier, 2005). The matrices obtained from the
aforementioned models is given in Table 8, which shows that
Model 1 with all features as well as reduced features, can
correctly classify 27 out of 41 cases of “no fall” and correctly
identifies 54 out of 62 cases of “fall”. Model 2 with all the
features correctly identifies 27 cases out of 28 cases of “local
fall” and misclassifies 1 case as main fall whereas it correctly
identifies 26 cases of main fall out of 36 cases of the category
and incorrectly identifies 10 such cases as local fall. However,
the impact of feature selection is evident from the results
obtained from model 2 with reduced features in which the

Fig.10: Feature importance of Model 2 (reduced features)

TABLE 5: OPTIMAL SET AFTER FEATURE REDUCTION

Hyperparameters Model 1 (no Model 2 (local
fall (0)/fall (1)) fall (0)/main fall (1))

n-estimators 200 200
Max features sqrt auto
Max depth 20 15
Min sample split 2 2
Min sample leaf 2 2
Criterion entropy gini

TABLE 6: TRAINING SCORE

Training score With all features With reduced features
Model 1 0.9272 0.9227
Model 2 0.8943 0.9014

TABLE 7: CONFUSION MATRIX

True class no fall fall

True positive (TP) false positive (FP)

False negative (FN) true negative (TN)

Pr
ed
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te

d 
cl

as
s

fa
ll 

no
 f

al
l

ability of the model to correctly predict the occurrence of main
fall increases to 29 cases out of 36 cases.
3.5 CLASSIFICATION REPORT

The classification report of the models is given in Table 9.
Highest accuracy of 79% is achieved over test dataset for
predicting the occurrence of fall (Model 1 with all features)
and highest accuracy of 88% over test data for predicting the
occurrence of local or main fall.

The predictive accuracy after removing eight least
important features remains almost in case of Model 1, whereas
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indicator for taking advance precautions for safety of workers
and equipment in the caving panel against fall. It can be
inferred that the quality of data and features selected for
creating the model plays a crucial role in efficacy of the model,
as is evident from the result of this research that if the
parameters are selected on the basis of their importance an
increase in accuracy of model’s result is observed.
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TABLE 8 CONFUSION MATRIX OF THE MODELS

Model 1 (no fall (0)/fall (1))
With all features              With reduced features

Model 2 (local fall (0)/main fall (1))
With all features                    With reduced features

With reduced features

TABLE 9: CLASSIFICATION REPORT

Model 1 (No fall (0)/ Fall (1))
With all features

Precission Recall f1-score Support

0 0.77 0.66 0.71 31
1 0.79 0.87 0.83 64

Accuracy 0.79 103
Macro avg 0.78 0.76 0.77 103

weighted avg 0.79 0.79 0.79 103

With reduced features
Precission Recall f1-score Support

0 0.76 0.63 0.69 11
1 0.78 0.87 0.82 62

Accuracy 0.78 103
Macro avg 0.77 0.75 0.76 103

weighted avg 0.78 0.78 0.77 103

Model 2 (Local fall (0)/ Main fall (1))
With all features

Precission Recall f1-score Support

0 0.73 0.96 0.83 28
1 0.96 0.72 0.83 36

Accuracy 0.83 64
Macro avg 0.85 0.84 0.83 64

weighted avg 0.86 0.83 0.83 64

Precission Recall f1-score Support

0 0.79 0.96 0.87 28
1 0.97 0.81 0.88 36

Accuracy 0.88 64
Macro avg 0.88 0.88 0.87 64

weighted avg 0.89 0.88 0.88 64

TABLE 10: COMPARISON OF AUC OF MODELS

With all With reduced
features  features

Model 1 (no fall (0)/fall (1))  0.765  0.753
Model 2 (local fall (0)/main fall (1)  0.843  0.885

the accuracy of prediction of local and main fall gets
enhanced by +5% in case of Model 2, those features may
have been declining the model performance.
3.6 ROC CURVE

The ROC curve is formed by plotting the true positive rate
(sensitivity) on y-axis and the false positive rate on x-axis
which is in turn calculated from the confusion matrix as:

True positive rate = 

False positive rate = 1 – true negative rate

(True negative rate is also known as specificity.) The
curves formed after testing the models over test dataset has
been shown in Fig.11. These curves act as simple but
effective tool for assessing the model performance, which can
be summarized as the larger the area under the curve (AUC)
(Table 10) the better is the classification ability of the model
(Bradley, 1997).

4.0 Conclusions
The data collected from two collieries has been employed to
create models which predict the occurrence of fall and classify
it as local and main fall with substantial and reliable accuracy.
For field implementation of the model, the different anticipated
extraction areas along with other parameters are tested by the
models for prediction of fall and to classify the same as local
or main fall. The set of such areas which passes the tests
gives the sequence of local and main fall and act as an
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Model 1 (no fall (0)/fall (1))

Fig.11 ROC curves of models

Model 2 (local fall (0)/main fall (1))

expressed in the paper are that of the authors and not
necessarily of the organizations they belong to.
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