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Buckling analysis of thick plates has been carried out herein
by using a single variable simple plate theory. Theory used
herein is a third order shear deformation plate theory which
uses  a  single  displacement  function  for  the  complete
formulation of plates. Plate formulation is governed by only
one governing differential equation. Governing equation of
the  theory has close resemblance  to  that of Classical Plate
Theory.  Thus,  plate  problems  can  be  solved  in  the  similar
lines as  in case of classical plate  theory. Plate  theory used
herein  does  not  require  a  shear  correction  coefficient.  To
check the efficacy of  the theory buckling analysis of simply
supported  thick  rectangular  plates  is  carried  out.  Critical
buckling  loads  for  simply  supported  plates  are  evaluated
and  the  results  obtained  are  compared  to  other  shear
deformation plate theories. Buckling load results are found
to be  in good agreement with other plate  theory  results.

Keywords: Buckling analysis, thick plates, higher order,
shear deformation, simply supported plate.

1.0 Introduction

Buckling analysis of thin and thick plates is one of the
important areas of investigation in the field of plate
theory research. Buckling analysis of thin and thick

plates has been discussed in literature in a comprehensive
manner by using different class of plate theories. The
important classical and shear deformation theories used
commonly for the analysis of thin and thick plates are:
Classical plate theory (involves one variable) (CPT) [1, 2],
Mindlin’s first order plate theory (involves three variables)
[3], Reddy’s higher order plate theory (involves three
variables) [4, 5] and Refined plate theory (involves two
variables) (RPT) [6].

Classical plate theory (CPT) [1, 2] is the basic and oldest
theory in the literature of plate theories. CPT equations do
not include the shear deflection component in the
formulation. This drawback restricts the use of CPT only for
the investigation of thin plates. The use of CPT for the
buckling analysis of thick plates will result in the
overestimated buckling loads. Also, the CPT yields the
overestimated values for frequencies and underestimated
deflection values in case of thick plates. The inaccuracies in
the predicted results would increase as the plate thickness
increases. This drawback of CPT demands for the use of
refined or higher order plate theories for the investigation of
thick plates. A detailed study on thin plate formulation based
upon CPT could be found in the textbooks by Timoshenko
and Woinowsky-Krieger [1] and Timoshenko and Gere [2].

In the class of thick or shear deformation theories, the
plate theory proposed by Mindlin is one of the oldest theories
developed. Mindlin’s theory is a displacement based first
order plate theory [3]. The study of thick plates using
Mindlin’s theory linked with three displacement variables and
the plate formulation requires three governing differential
equations. In comparison with CPT results, Mindlin’s theory
can give considerably accurate results in case of thick or
shear deformable plates [7]. The formulation of the theory
involves a shear coefficient or shear correction factor. Shear
coefficient is necessary to add correction to the values of
transverse shear stresses evaluated by Mindlin’s theory.
Because, Mindlin’s theory yields the constant transverse
shear stress across the plate thickness instead of actual
parabolic shear stress distribution. This is a common
drawback involved in case of first order beam and plate theory
formulation. Many research papers are available in the beam
and plate theory literature providing discussion on the use
of shear coefficients. Important papers available based on
Mindlin’s theory are: Wang and Alwis [8], Wang et. al [9],
Wang et. al [10] and Lee et. al [11].

In the class of higher order plate theories, Reddy’s theory
is one of the most popular plate theories. Reddy’s theory is a
displacement based third order plate theory [4, 5]. Reddy’s
theory is governed by five coupled differential equations and
involves five unknown displacement variables. Being a higher
order theory, this theory does not involve a shear coefficient
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or shear correction factor in the plate formulation. The
transverse shear stress distribution is parabolic across the
plate thickness. Hence, the condition of shear free stress
condition is automatically satisfied. Some of the important
papers available based on Reddy’s plate theory are: Reddy
and Phan [12], Reddy and Wang [13], Shufrin and Eisenberger
[14] and Hashemi et. al [15].

Refined plate theory (RPT) [6] is a displacement based two
variable higher order plate theory. Due to the involvement of
only two variables, the plate analysis using RPT is
considerably simplified compared to other higher order
theories. The formulation of the theory splits the lateral
deflection into two components; bending component and
shear component. RPT formulation leads to two coupled
governing differential equations for vibration study. These
equations are decoupled in case of static problems. The
theory has strong similarity to CPT expressions. The moment
and shear force expressions of RPT have strong resemblance
to the CPT expressions. Important papers available based on
RPT are reported in the publications by Thai and Choi [16],
Thai and Kim [17, 18]. Other important works based on RPT
are also available in the publications by Shimpi et al [19, 20].

Objective of this paper is to study the buckling analysis of
thick shear deformable plates by using a third order Single
Variable Simple Plate Theory (SVSPT) published in a paper by
Shimpi et al. [21]. SVSPT used herein for the investigation of
thick plates is developed based upon the formulation of RPT
[6, 19, 20]. SVSPT incorporates a single displacement variable
for the complete formulation of plates. Lateral deflection of the
plate is the unknown displacement variable involved in the
plate formulation. Displacement field and the expressions for
strains, stresses are all can be expressed in terms of a single
variable. Governing equation is a fourth order differential
equation incorporating a single unknown function. Also,
governing equation has close resemblance to that of CPT.
Hence, the plate analysis using the theory used herein will be
almost in the similar lines of that of CPT. Efforts involved in
solving the plate problems using SVSPT is slightly more
compared to that of CPT. Venkatesha B K et al. [25, 26] studied
the numerical analysis of damage tolerance design. Fatigue
crack growth rate and stress intensity factor range was
estimated with Paris law of damage crack growth.

In this paper, the usefulness of SVSPT is showcased by
carrying out the buckling study of thick plates. Plates with
simply supported edge conditions are considered for the
discussion. Buckling loads calculated by SVSPT are compared
with the buckling loads predicted by CPT and other thick plate
shear deformation theories for the validation purpose.
Buckling load results are presented in a tabular form for the
easy comparison and observation.

2.0 Plate formulation: single variable simple
plate theory (SVSPT)

Displacement, bending moment and shear force expressions

of SVSPT will be presented now in this section. Also, the
boundary conditions and governing equation pertaining to
SVSPT will also be discussed. The more details about single
variable simple plate theory is available in a publication on
SVSPT by Shimpi et al. [21].
2.1 DISPLACEMENT FIELD OF SVSPT

Displacement field of SVSPT is discussed herein. The axial
or in-plane displacements (u and v) and lateral deflection (w)
of SVSPT are as follows [21]:

         ... (1)

         ... (2)

... (3)

Equations (1), (2) and (3) are the displacement expressions
pertaining to SVSPT. The displacements u, v and w contain
only wb as an unknown displacement variable. Therefore, the
expressions for strains and stresses also contain single
unknown displacement variable. For the strain and stress
expressions of SVSPT one can refer to the publication by
Shimpi et al. [21]. Further, the plate formulation using SVSPT
is in the similar lines of CPT wherein also single variable is
involved in the formulation [1].
2.2 EXPRESSIONS FOR MOMENTS AND SHEAR FORCES OF SVSPT

The bending moments (Mx, My, Mxy) and shear forces (Qx,
Qy) given by SVSPT are as follows:

... (4)

... (5)

... (6)

... (7)

... (8)

The bending moments (Mx, My, Mxy) and shear forces (Qx,
Qy ) are given by Eqs. (4) - (8). The expressions contain only
wb as an unknown displacement variable. The above
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expressions for moments and shear forces also have similar
appearance as those of CPT expressions [1, 2].

2.3 DERIVATION FOR GOVERNING DIFFERENTIAL EQUATION

Geometry of the plate under consideration is as shown in
Fig.1. The plate under consideration is subjected to the
combined action of in-plane loads Nx (acting along x-
direction), Ny (acting along y-direction), shearing forces Nxy
(acting in xy plane) and a lateral distributed load of intensity
q(x, y) (acting along z-direction).

For the above set of loading condition, the plate
equilibrium equations can be written as follows [21]:

... (9)

... (10)

... (11)

Substituting for Mx, My and Mxy from Eqs.(4)-(6),
respectively, one obtains

               ... (12)

Equation (12) is considered as the governing differential
equation for determining the deflection surface of a plate by
considering the effects of in-plane forces Nx, Ny and Nxy. The
above differential equation is linked with only one unknown
displacement variable (wb). In appearance, the governing
equation (12) is closely similar to that of CPT governing
equation [1, 2].

3.0 Simply supported rectangular plate: derivation of
characteristic equation for plate buckling using SVSPT

Consider a rectangular plate as shown in Fig.1. Plate under
consideration is subjected to simply supported boundary
conditions at edges x=0, a and y=0, b. Plate is subjected to
in-plane forces Nx=Ny=–N0 and shearing force Nxy is taken
as zero. Therefore, the governing equation (12) can be
rewritten as follows:

... (13)

Plate is also subjected to a lateral distributed load q(x,y).
Lateral load q(x,y) applied on the plate can be represented
using double Fourier series as follows:

Fig.1: Rectangular plate under the combined action of in-plane and
lateral loads

... (14)

where qmn is a Fourier constant which depends upon type of
loading. For lateral distributed load, Fourier constants are
given by

    For m=1,3,5, ... and n=1,3,5, ...

  q0=0    For m=2,4,6, ... and n=2,4,6, ...
Navier’s solution for wb which can satisfy the simply

supported boundary conditions at edges x=0, a and y=0,b
can be written as follows:

... (15)

where Cmn is the constant associated with displacement.
Substituting Eqs. (14) and (15) in governing equation (13),

one can write the characteristics equation for the plate
buckling as follows:

... (16)

where, 
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Rearranging the terms, Eq. (16) can also be written as follows:

... (17)

By substituting Nx = Ny = –N0 in Eq. (17), we have

... (18)

In case of square plates, Eq. (18) can be written as follows:

... (19)

It is evident that the value of critical buckling load is
obtained by taking n = 1. Hence,

... (20)

In case of square plates, Eq. (20) can be written as follows:

... (21)

4.0 Results for buckling loads and discussion
on the results

Table 1 presents the results for buckling coefficients () of a
square plate with simply supported edge conditions and
subjected to compressive in-plane loads Nx and Ny. The
buckling coefficient () used in Table 1 is defined as follows:

For the comparison of buckling loads calculated by
SVSPT, Table 1 also presents the buckling loads predicted by
using the CPT and other first order and higher order thick
plate theories.
DISCUSSIONS ON RESULTS FOR BUCKLING COEFFICIENT ()

In connection with the results for buckling coefficient ()
presented in Table 1, the following observations can
be noted:

TABLE 1: RESULTS FOR BUCKLING COEFFICIENT (?) OF A SIMPLY SUPPORTED SQUARE PLATE UNDER BUCKLING LOADS

Theory Results for buckling coefficient (?)
Uniaxial compression (Nx = –N0 and Ny=0)

h/a=0.001 h/a=0.05 h/a=0.1 h/a=0.2

Exact [22] 4.000 3.9110 3.7410 3.1500
CPT [2] 4.000 4.0000 4.0000 4.0000
Mindlin [23] 4.000 3.9444 3.7864 3.2637
Reddy [24] 4.000 3.9443 3.7865 3.2653
RPT [16] 4.000 3.9443 3.7865 3.2653
SVSPT 4.000 3.9444 3.7864 3.2637

Biaxial compression (Nx = –N0 and Ny  = –N0)

h/a=0.001 h/a=0.05 h/a=0.1 h/a=0.2

CPT [2] 2.0000 2.0000 2.0000 2.0000
Mindlin [23] 2.0000 1.9722 1.8932 1.6319
Reddy [24] 2.0000 1.9722 1.8933 1.6327
RPT [16] 2.0000 1.9722 1.8933 1.6327
SVSPT 2.0000 1.9722 1.8932 1.6319
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Buckling coefficients predicted by SVSPT for the case of
simply supported square plates are accurate in comparison
with exact theory or theory of elasticity results for buckling
loads. The buckling loads obtained by SVSPT are more or less
same as those predicted by other thick plate theories, namely,
Mindlin, Reddy and RPT plate theories cited in Table 1.

Only CPT results differ as the plate thickness is increased.
This is in well agreement with the discussions presented in
the previous sections that, CPT can only be used only for
the investigation of thin plates as it neglects the shear
deformation effects.

5.0 Conclusions
In this paper, the SVSPT could be used successfully and in a
simplistic manner for the buckling study of thick plates with
simply supported edge conditions. The plate analysis using
SVSPT is simpler as the formulation leads to only one
governing differential equation. Also, as the governing
equation of SVSPT is closely similar to that of CPT, the plate
analysis can be carried out in the similar lines of CPT. In case
of SVSPT, all the expressions associated with plates can be
expressed in terms of a single unknown displacement
variable. This reduces the complexity in the plate analysis.
The efforts involved in solving plate problems using SVSPT
is considerably less when compared to the plate analysis
using other higher order thick plate theories. The buckling
loads predicted by SVSPT are in good agreement with the
results predicted by other thick plate theories.
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