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Abstract
Industrial machinery often breakdowns due to faults in rolling bearing. Bearing diagnosis plays a vital role in condition moni-
toring of machinery. Operating conditions and working environment of bearings make them prone to single or multiple faults. 
In this research, signals from both healthy and faulty bearings are extracted and decomposed into empirical modes. By analyz-
ing different empirical modes from 8 derived empirical modes for healthy and faulty bearings under different fault sizes, the 
first mode has the most information to classify bearing condition. From the first empirical mode eight features in time domain 
were calculated for various bearing conditions like healthy, rolling element fault, outer and inner race fault. The feature ex-
traction of vibration signal based on Empirical Mode Decomposition (EMD) is extensively explored and applied in diagnosis 
of fault in rolling bearings. This paper presents mathematical analysis for selection of valid Intrinsic Mode Functions (IMFs) of 
EMD. These chosen features are trained and classified using different classifiers. Among them K-star classifier is most reliable 
to categorize the bearing defects. 
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Bearing Fault Classification using Empirical Mode 
Decomposition and Machine Learning Approach

1. Introduction
Rolling element bearing acts as one of the vital com-
ponents in rotating machinery. Pitting and spalling 
are major common defects in bearings. Misalignment, 
lubrication failure, fatigue, poo fitting, contamination 
and corrosion are major reasons for bearing failure 
in rotating components. It is necessary to detect and 
fix these defects in initial phase to avoid fatal failure 
and damage of machinery (Tandon and Choudhury, 
1999; Patil et al., 2008).One of the popular technique for 
machine condition monitoring (Taylor, 2003; Scheffer 
and Girdhar, 2004) is vibration analysis. Common fail-
ures leave signs in raw vibration signal. These could 
be used with existing principles to design predictive 
maintenance systems. Figure 1. Flow chart of fault diagnosis of bearing with 

machine learning approach.
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Table 2. Comparison between various classifiers 
against classification accuracy and computational time

Classifier Classification 
Accuracy (%)

Computational 
Time (Sec)

1. Artificial Neural 
Network 80 0.5

2. Naïve Bayes 87 0.0
3. Bayes Net 82 0.02

4. Support Vector 
Machine 61.5 0.31

5. K-Star 90 0.0

6. Decision Tree 86.5 0.02

Traditionally, waveforms of fault vibration signals 
in time or frequency domain is used to detect faults 
in bearing (Peng et al., 2005; Su et al., 2010; Rafiee et 
al., 2010; Feng et al., 2011). Operating a defect bearing 
acts as a source of noise and vibration (Sunnersjo, 1978; 
Sunnersjo, 1985). Signals extracted from these bearings 
are neither linear nor stationary. This weakens feature 

extraction of fault information affecting accuracy of 
fault identification when the analysis is done in time 
or frequency domain. Targeting the problem, N.E. 
Huang (1998) proposed an EMD method which is a 
self–adaptive signal processing method for fault fea-
ture extraction of rolling bearings. EMD algorithm is 
used to decompose the signals into components with 
a well-defined instantaneous frequency called Intrinsic 
Mode Functions (IMFs). Figure 1 illustrates methodol-
ogy with machine learning approach in fault diagnosis 
of bearing.

2. Experimental Set Up
Figure 2 shows line diagram of experimental set up. It is 
comprised 1 HP motor, bearing 1, bearing 2 with acceler-
ometer and loading platform. Motor shaft is supported by 
end bearings. Single point faults were seeded to the test 
bearing (bearing 2) using laser cutting method. The fault 
diameter of 0.1mm, 0.3mm and 0.5mm were seeded indi-
vidually at the inner race, rolling element and outer race. 

Table 1. Energy feature vector evaluation based on EMD method

Class Sample No.
Energy Feature Vector
V1 V2 V3 V4 V5 V6 V7 V8

Healthy
1 0.2848 0.6939 0.1651 0.0725 0.1467 0.3074 0.3801 0.3801
2 0.3121 0.7692 0.1557 0.0790 0.1450 0.3116 0.2849 0.2849

Inner 
Race(0.1)

1 0.4868 0.7159 0.4226 0.2210 0.1033 0.0923 0.0448 0.0448
2 0.3190 0.8011 0.4527 0.1871 0.0876 0.0703 0.0448 0.0448

Ball(0.1)
1 0.9069 0.4076 0.0763 0.0527 0.0399 0.0287 0.0145 0.0145
2 0.8729 0.4712 0.0932 0.0499 0.0369 0.0283 0.0361 0.0361

Outer 
Race(0.1)

1 0.5273 0.7168 0.4546 0.0359 0.0102 0.0035 0.0035 0.0035
2 0.4989 0.6975 0.5116 0.0527 0.0106 0.0035 0.0036 0.0036

Inner 
Race(0.3)

1 0.9886 0.1454 0.0327 0.0105 0.0093 0.0095 0.0067 0.0067
2 0.9804 0.1902 0.0459 0.0138 0.0116 0.0088 0.0055 0.0055

Ball(0.3)
1 0.9662 0.2296 0.0369 0.0243 0.0534 0.0794 0.0358 0.0358
2 0.9502 0.2642 0.0518 0.0360 0.0491 0.1314 0.0433 0.0433

Outer 
Race(0.3)

1 0.8329 0.5403 0.1046 0.0325 0.0311 0.0298 0.0156 0.0156
2 0.8837 0.4594 0.0699 0.0197 0.0236 0.0228 0.0287 0.0287

Inner 
Race(0.5)

1 0.9973 0.0526 0.0123 0.0142 0.0160 0.0132 0.0306 0.0306
2 0.9971 0.0711 0.0145 0.0078 0.0126 0.0068 0.0110 0.0110

Ball(0.5)
1 0.9601 0.2709 0.0583 0.0260 0.0169 0.0152 0.0104 0.0104
2 0.9642 0.2599 0.0438 0.0216 0.0142 0.0106 0.0056 0.0056

Outer 
Race(0.5)

1 0.8937 0.4324 0.1012 0.0332 0.0374 0.0352 0.0118 0.0118
2 0.8935 0.4284 0.1188 0.0295 0.0391 0.0340 0.0152 0.0152
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Test rig was reinstalled with faulted bearings and acceler-
ometers (not shown) attached to the housing were used 
to collect vibration data. This experiment runs at constant 
load of 200 N and speed of 1200 rpm which is same as real 
time application.

Figure 2. Line diagram of experimental set-up.

2.1 Data Analysis and Methods

2.2.1 Empirical Mode Decomposition
In 1998, Haung et al. (1998) proposed a method for signal 
analysis called as empirical mode decomposition (EMD) 
to deal with non-stationary and non-linear signals. In this 
method any complex signal is decomposed into a residual 
portion and several multi scale Intrinsic Mode Functions 
(IMFs). Each IMF is denoted by a function and must sat-
isfy below two conditions.

1. Differences in the number of maxima and zero cross-
ings must be less than or equal to one.

2. Average of upper envelope and lower envelope signal 
should be less than defined threshold values, which is 
equal to zero.

The detailed algorithm can be found in the article of 
Haung et al. (1998). The result of EMD algorithm will be 
numerous IMFs. Based on signal analyzed, number of 
IMFs might differ. From the set of IMFs extracted, few 
would have fault signal part which helps in identifying 
faults. Extracted features could be used independently or 
as inputs to fault diagnosis models.

Generally below mentioned problems are addressed 
with EMD method.

1. Finding relevant intrinsic mode functions of the signal.
2. Extraction of features relevant to faults from IMFs.
3. By using extracted features it establishes fault detection 

and diagnosis models. 

2.2.2 Classification with EMD Features
The extracted vibration signals relevant to 10 different 
class of bearing, features are decomposed into several 
IMFs using EMD method. The amplitude energy feature 
vector is constructed using fault information which was 
dominantly present in first 8 IMFs and same was used to 
verify the performance of model proposed. Using equa-
tion T’= [E1, E2, E3… … En], feature energy vector is 
obtained and is provided as input vector to decision tree 

Table 3. Confusion matrix of K-star algorithm with EMD features

A B C D E F G H I J CLASS
20 0 0 0 0 0 0 0 0 0 A- Healthy

0 20 0 0 0 0 0 0 0 0 B- Inner Race (0.1)

0 0 18 0 0 0 1 0 0 1 C- Ball (0.1)

0 0 0 19 1 0 0 0 0 0 D- Outer Race (0.1)

0 0 0 0 20 0 0 0 0 0 E- Inner Race (0.3)

0 0 0 0 0 18 0 0 0 2 F- Ball (0.3)

0 0 0 0 0 0 18 0 0 2 G- Outer Race (0.3)

0 0 0 0 0 0 0 20 0 0 H- Inner Race (0.5)

0 0 1 0 1 0 0 1 17 0 I- Ball (0.5)

0 0 1 0 0 0 9 0 0 10 J- Outer Race (0.5)
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(J48 algorithm). Table 1 shows energy feature vector (2 
samples per class) evaluation based on EMD method.

3. Feature Reduction and 
Classification
Different fault conditions were induced to bearing and 
vibration signal were acquired. Overall vibration level 
could be determined with vibration signal analysis using 
time domain technique. But this doesn’t provide diag-
nostic information. Hence EMD features were extracted 
from signals acquired and fed as input to J48 algorithm. 
K-star algorithm (Cleary, 1995) is used to classify differ-
ent fault conditions from reduced features.

As shown in Table 1. EMD features are extracted in 
large number from signals. Not all the features extracted 
have relevant information. Accuracy of classifier is 
affected by irrelevant information making computa-
tion more difficult and wastage of system resources. 
J48 algorithm was fed with 8 EMD features as input. 2 
among them were ignored as their contribution to clas-
sification was negligible. From extracted EMD features, 
6 most significant contributors were identified using J48 
algorithm. Machine learning was leveraged for classifica-
tion of selected features using different classifiers. Table 2 
provides information on classification accuracy and time 
required to classify the instances for the extracted EMD 
features.

Classification accuracy and time complexities are 
listed in Table 2 for different classifiers. Based on these 
parameters users would have to choose relevant algo-
rithms for classification (Jegadeeshwaran and Sugumaran, 
2014). In comparison to other classifiers K-star classifier 
needs less time for classification and yields high accuracy. 
Table 3 depicts confusion matrix of K-star algorithm with 
EMD features.

From Table 3, out of 200 samples only 20 instances 
are misclassified. This yields a classification efficiency of 
90%, which is greater than other classifiers. With notably 
high classification efficiency, K-star classifiers with EMD 
features for fault diagnosis of bearing looks attractive.

4. Conclusions
In current study, an effort has been made to evaluate the 
suitability and capability of different classifiers for bearing 
condition monitoring. Vibration signals were acquired 
from different fault bearing conditions and were fed as 

input to MATLAB to extract EMD features. Different 
classifiers were used to compare the extracted features. 
Among them K-star classifier yields a classification effi-
ciency of 90% which is promising for a high accuracy 
diagnosis of fault bearing. Hence could be used to moni-
tor condition of bearing in various applications. Future 
research could focus on prediction of early faults in bear-
ings by comparing different bearing conditions with 
different algorithms.
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