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Abstract
Depillaring with caving method of mining is a common practice in Indian coalfields and so is the occurrence of fall in goaf 
area, which can be considered as a boon in disguise as it allows wining of coal from large reserves but this becomes a curse 
just because of its unpredicted occurrence. Various empirical and statistical models are developed after idealization of several 
complicated mechanisms but they are not able to predict roof fall accurately especially in caving panels. Therefore, a new ap-
proach based on Artificial Intelligence is used to predict the sequence of local and main fall in caving panel taking into account 
a host of geotechnical and mining parameters of the mine. Mathematical equations and hidden calculations of artificial neural 
networks are known to have the capability of learning and analyzing records endlessly. Two different models have been de-
ployed after optimal hyper parameter optimization to predict the occurrence of fall and to characterize the nature of fall (local 
or main) with considerable and reliable accuracy.

 

Keywords: Bord and Pillar, Caving, Deep Learning Algorithm, Deep Neural Network, Hyper Parameter Optimization, Local Fall, Main 
Fall, Talos

Artificial Intelligence Model for Prediction of Local 
and Main FALL in caving Panel of Bord and Pillar 
Method of Mining

1. Introduction
Artificial intelligence is competing with human intelli-
gence nowadays, using neural network algorithms. Simon 
(1957) has predicted way back in 1957 that “Machine will 
think, learn and create” like humans. Before rock mechan-

ics advancement in India, experienced mining personnel 
used to predict roof fall when strata started talking to 
them with admissible accuracy and saved many valuable 
lives. Artificial Neural Network (ANN) has been used for 
roof fall hazard assessment (Malkowski and Juszynski, 
2021), roof fall hazard detection (Isleyen et al., 2021), 
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predicting roof fall rate by novel fuzzy interface system 
(Razani et al., 2013), forecasting shield pressures (Deb et 
al., 2006), pillar stress prediction (Monjezi et al., 2009) 
and also being used for weather forecasting, voice and 
image recognition, stock market prediction, health care, 
driverless vehicle etc.

Success of bord and pillar mining is dependent on 
stability of four basic structures i.e. roof strata, bord, pil-
lar and support at various stages of depillaring which are 
highly dependent upon in situ stresses (Sheorey, 1994), 
mining induced stresses (Singh et al., 1996) and; natural 
as well as artificial supports provided during extraction.

Jena et al. (2016) have observed that loading dyna-
mism produced due to unequal strata movement is 
proportional to increase in goaf span and area and forms 
a dynamic loading zone which affects the working area 
and goaf edges. The loading effect is highest near the goaf 
edges which decreases farther in dynamic loading zone 
of working area and requires advance support in caving 
panel.

For prediction of main fall and periodic caving 
span, a theoretical model has been given by Obert and 
Duvall, (1967) based on plate-beam theory and by 
Majumdar, (1986)”type”:”article-journal”},”uris”:[“http://
www.mendeley.com/documents/?uuid=6a2cb130-8df3-
4207-9ad0-a29e91420db2”,”http://www.mendeley.com/
documents/?uuid=306012fb-1898-4992-a434-4f5684
3228e5”]}],”mendeley”:{“formattedCitation”:”(Majum
dar, 1986 based on bending moment approach. Some 
researchers have given empirical relation for span of main 
fall (Pawlowicz, 1967; Peng and Chiang, 1984) and peri-
odic caving span (Peng and Chiang, 1984; Sarkar and 
Dhar, 1993; Sarkar, 1998). Other researchers have given 
models for assessment of roof caving and caving span 
(Ghose and Dutta, 1987; Sarkar, 1998; Sarkar and Dhar, 
1993; Sheorey, 1984). Nimaje and Sai (2015) have devel-
oped a software for calculation of roof fall risk, based on 
probability and consequences using parameters respon-
sible for roof fall in underground mines.

McCulloch and Pitts, 1943 have introduced the first 
ANN, which is a powerful computational model consist-
ing of large number of elemental units called neurons 
arranged in input, hidden and output layers simulating 
biological neurons (Fausett, 1993). 

The revolutionary developments in 1980s led to the 
resurgence of ANNs, namely the energy analysis of feed-
back neural networks by (Hopfield, 1982, 1984). The 
ANNs can separate non-linear data by assigning certain 

weights for each input and after multiplying them, sums 
the product, and passes it through a non-linear transfer 
function to provide the output (Lee et al., 2003). The acti-
vation for thi  neuron in thl  layer is calculated as: 

[ ] [ ] [ ] [ ]1  l l T l l
i i iz w a b−= +

[ ] [ ]( ) l l
i ia f z=

Similarly, all the activations for a given layer can be 
calculated as:

[ ] [ ] [ ] [ ]1  l l l lZ W A b−= +

[ ] [ ]( )  l lA f Z=

Figure 1. Basic structure of a neural network.

A neural network is an interconnected aggregation 
of units, its characteristics are determined by the topol-
ogy and properties of the ‘neuron’ (Russell and Norvig, 
2021). A multilayer perceptron in a neural network can 
be formed by stacking the neurons to produce a layer 
(Haykin, 1999) and then cascading these layers together 
(Nazzal et al., 2008) as shown in Figure 1.

2. Proposed Methodology
The roadway to model creation has been summarized 
in Figure 2. Extensive literature review has been done 
to analyse the contributory factors and then select the 
parameters to be included for model creation as dis-
cussed in Section 3.0. This is followed by visits to various 
mines for collection of relevant data (Section 4.0). This 
is the passed through various pre-processing techniques 
to enhance the quality of data which is a crucial step for 
creating a good model (Section 4.2).
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Figure 2. Roadway to model.

Once the raw data gets pre-processed, it is then intro-
duced to Keras, (Chollet et al., 2015) deep neural network 
algorithm, written in Python (Rossum and Drake, 2009) 
programming language on Google Colab (Bisong, 2019).

Due to the presence of a lot of hyper parameters 
(Section 4.4), training the neural network and achieving 
a desirable performance becomes difficult. Thus, a neural 
network hyper parameter optimization tool, Talos (Talos, 
2019) is required to extract the best set of hype param-
eters (Figure 3), which has been used recently to classify 
air quality (Parashar and Sonker, 2019).

After achieving a reasonably good model the scan has 
been stopped and the model is deployed and then it is 
evaluated on the test dataset which has been kept aside 
from the training process. The performance of the model 
has been analysed in terms of confusion matrix, classifica-
tion report receiver operator characteristic (ROC) curve 
and area under curve (AUC).

3. Contributory Parameters of 
Local and Main Fall
Local fall takes place within twenty-four to forty-eight 
hours after withdrawal of support in the goaf area. It does 
not extend up to the surface and affects only few meters 
of the strata above the coal seam whereas main fall affects 
the surface and takes place long after local fall.

Figure 3. Hyper parameter optimization using Talos.

The factors that have ability to affect the roof-fall 
directly or indirectly are geological disturbances like 
joints, folds, faults, dykes, shape of deposit etc, physico-
mechanical properties of deposit and surrounding rock, 
immediate roof, Rock Mass Rating (RMR) or Coal Mine 
Rock Rating (CMRR), depth of cover, systematic support 
rule, goaf area, method of excavation, working height 
etc. (Ghasemi et al., 2012; Kumar et al., 2019; Mark and 
Michael, 2017; Mark and Molinda, 2007; Palei and Das, 
2009). A parameter is considered to be a variable internal 
to the model, its value can be approximated from the data 
(Torres, 2018). For model creation the actual names of the 
parameters have been used but for ease of depiction the 
parameters have been renamed as (h1-h36): 
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h1 Quantity of coal in the panel (t)
h2 Seam thickness (m)
h3 Gradient of dip (degree)
h4 Average thickness of cover/ Depth (m)
h5 Average gallery width (m)
h6 Pillar number
h7 Length of pillar (m)
h8 Width of pillar (m)
h9 Length of depillaring panel (m)
h10 Width of depillaring panel (m)
h11 Sandstone percentage (%)
h12 Coal left in immediate roof (m)
h13 Coal layer thickness value (cm)
h14 Coal SFI value
h15 Coal slack durability index (SDI,%)
h16 Coal UCS (kg/cm2)
h17 Coal GWS value (mL/min)
h18 Total rating of coal
h19 Thickness of immediate rock (m)
h20 Rock layer thickness value (cm)
h21 Rock SFI
h22 Rock SDI (%)
h23 Rock UCS (kg/cm2)
h24 Rock GWS value (mL/min)
h25 Total rating of rock
h26 Combined Rock Mass Rating (RMR)
h27 Rock load(t/m2)
h28 Tensile strength (kg/cm2)
h29 Poisson’s ratio
h30 Young’s modulus (GPa)
h31 Area of fall (m2)
h32 Days
h33 Rock type shale (S)
h34 Rock type shaly sandstone (SH SST)
h35 Rock type sandstone (SST)
h36 Fall (Model 1 – No fall(0) or Fall(1), 
 Model  2 – Local fall(0) or Main fall(1)).
where, UCS - Uni-axial compressive strength.
SFI - Structural feature Indices
GWS - Ground water seepage

4. Data Acquisition
The data is collected from two different areas, Dhori and 
Bhurkunda. The Dhori Khas colliery is situated in the 
Dhori area of East Bokaro coalfields. The mine is bounded 
by latitudes 23046’00” to 23046’53’’ North and longitudes 
86000’22’’ to 86001’22’’ East. The lithological formations 

present here are Talcher, Karharbari and Barakar forma-
tions of Lower Gondwana, the later forms major part 
of the minefield area. It comprises of two units, 7 and 8 
Incline and 4,5 and 6 Incline. A borehole section (CMED- 
19) out of 9 boreholes drilled is shown in Table 1 and plan 
of mine Figure 4. The Karo Special Seam- III is one of 
them which in crops in the area. The average thickness 
of the seam is 2.5 m dipping at 1 in 6.5 due S 46o W, has 
been developed along floor in full height on bord and pil-
lar pattern. Bhurkunda colliery is located in Barka Sayal 
area of South Karanpura coalfields. The mine is bounded 
by latitudes 23o39’00” to 23o41’00” North and longitudes 
85o21’00” to 85o23’00” East. The geological formations 
belong to Lower Gondwana group, except the Raniganj 
formation all other formations are present here namely, 
Talcher, Karharbari, Barren measures, Barakar measures.

Table 1. Borehole section – CMED -19 (Dhori)

Bore hole section Thickness (m)
Soil 3.05
Fine grain sandstone 13.4
Sandy Shale 0.91
Corse grain sandstone 5.73
Sandy Shale 2.23
Gray Shale 2.07
Shally coal 1.07
Fine grain sandstone 13.91
Karo special seam IV 1.22
Sandy shale 1.00
Fine grain sandstone 8.54
Karo special seam III 2.32 (Being worked)
Corse grain sandstone 5.70

The Barakar formation being the major coal bearing 
formation. There are 11 seams, with thickness of 2.89 to 
5.68m and average gradient of 1 in 6, out of which the 
Upper Semana, Lower Semana and Hathidari seams are 
developed on bord and pillar pattern.

At Dhori and Bhurkunda collieries, the depillaring 
operation is being done using semi-mechanized method 
of mining with side discharge loader, universal drilling 
machine and full column grouted roof bolting system 
for strata control. Telltale, load cell and convergence 
recorders are be used for strata monitoring. Rope haulage 
system with coal-tub is used for coal evacuation from face 
to surface.
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Figure 4. Part hand plan at 4, 5 and 6 incline, Panel A, Dhori 
Khas Colliery.

Figure 5. The plot between area and days represents that a 
fall of larger area takes a longer time to occur, irrespective of 
it being local or main.

4.1 Data Analysis
To analyze the relationship amongst various parameters, 
the data has been visualized through scatter (Figures 5–7) 
and Pearson Correlation plot (Figure 8). A total of 324 
records have been collected which has been employed to 
form Model 1, the training dataset details can be seen in 
Table 2. Dataset for creating Model 2 contains total of 208 
records.

Table 2. Overview of dataset for Model 2

Table 3. Data characteristics after robust scaling
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Figure 6. As the width of the depillaring panel increases, 
there is increased chance of occurrence of falls of larger area.

Figure 7. As Rock SDI increases, falls of smaller area  usually 
occurs as high SDI weakens the rock.

Figure 8. The Pearson correlation plot depicts that there 
is positive correlation between fall and area, h31 (0.42) 
and days, h32 (0.26) and negative correlation with seam 
thickness, h2 (-0.14) and average gallery width, h5 (-0.14).

4.2 Data Pre-processing
Fan et al. (2021) have summarized various data pre-pro-
cessing tasks as: Data cleaning, reduction, partitioning, 
scaling and transformation. The missing values have been 
dropped, after data cleaning, the categorical variables are 
transformed into numerical vectors. The deep learning 
algorithms which use weighted sum of inputs get biased 
by variables with large values and the small values are 
ignored.

To prevent this numerical data is scaled to standard 
range. However, standardization becomes biased if input 
variables contain outliers, which can be seen in the train-
ing dataset (Figure 9). 

 Figure 9. Presence of outliers and skewed data.
Hence, Robust Scaler is applied which scales the data on 

the basis of median (50th percentile) and inter-quartile range 
(difference between 75th and 25th percentile), given by:

75 25

 value medianScaled value
P P
−

=
−

The resulting values (Table 3) are not skewed by the 
outliers however they are still present with same relative 
relationships (Brownlee, 2020). The data is partitioned in 
the ratio of 70% for training and 30% for validation and 
testing. To prevent any data leakage, Robust scale is fit 
only on the training data, it then transforms the training, 
validation and test data.

4.3 Model Training
The dataset is randomly shuffled. Various hyper param-
eters that are tweaked and tuned during the training 
process are:

• Hyper parameters pertaining to network architecture: 
Different numbers of first layer neurons, hidden layer 
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neurons, the number of hidden layers and dropout 
ratios are tried out during training the model.

• Hyper parameters necessary for model training: 
Different activation functions like Rectified Linear 
unit (ReLu), Exponential Linear unit (Elu) and Tanh 
(Hyperbolic Tan) are used in the hidden layers, 
whereas sigmoid activation is used for the output layer 
of the binary classifier model. A variety of optimizers 
like Stochastic Gradient Descent (SGD), Root Mean 
Square propagation (RMSprop), Adaptive Moment 
Estimation (Adam), Nesterov accelerated Adaptive 
Moment Estimation (Nadam) at different learning 
rates are experimented to train over the dataset in 
batches. Callbacks and dropouts are used to prevent 
over fitting over the training dataset.

5. Result and Analysis

5.1 Hyper Parameter Space in the Scan 
(Table 4)
Table 4. Initial space and optimal set of 
hyperparameters (Hp)

Hp Initial 
space

Model 1
(No fall 
(0) Fall 

(1))

Model 2 
(Local fall (0) 
Main fall (1))

First layer 
neurons

33,144,256 256 256

Hidden layer 
neurons

72,144, 256 256 144

Hidden layers 0,1,2 2 1
Activation ReLu, Elu, 

Tanh
Relu Elu

Batch size 16, 32, 64 32 32
Dropout 0.2,0.45,0.5 0.5 0.2
Epochs 200,250,300 300 300
Learning rate 0.007,0.01, 

0.04
0.01 0.007

Kernel 
Initializer

Uniform, 
Normal

Normal Normal

Optimizer SGD, 
RMSprop, 

Adam, 
Nadam

RMSprop Nadam

Shape Long funnel, 
brick

Long 
funnel

-

The box plots (Figure 10) provides a detailed com-
parison of all the hyper parameters, a useful tool to assess 
their interplay and to decide the next set of hyper param-
eter boundary. SGD does not perform well and dropout 
of 0.5 provides better results.

 Figure 10. Comparison of hyperparameters.

5.2 Validation Accuracy and Loss
The accuracy of most of the models formed by different 
combinations of hyperparameters lie in range of 0.75 – 
0.85 and loss lies in the range of 0.4–0.5 for both the type 
of Models: 1 and 2 (Table 5). The loss function used for 
binary classification problems is the binary cross entropy/ 
Log loss (Godoy, 2018), it compares the predicted proba-
bilities ( )( )ip y

 
to actual output, given by:

( )( ) ( ) ( )( )
1

1 log 1  log 1
N

i i i i
i

Logloss y p y y p y
N =

=− + − −∑  

When ( )( )1  logi iy p y= ⇒  is added to the loss 

and when ( )( )0  log 1i iy p y= ⇒ −  is added to the 

loss.
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Table 5. Validation accuracy and loss of models

Validation accuracy Validation Loss
Models formed during search for Model 1

Models formed during search for Model 2

5.3 Performance of Selected Models with 
Optimal Hyperparameters Over Test Data

5.3.1 Confusion Matrix
A confusion matrix (Table 6) depicts the model classifi-
cation accuracy (Kalantar et al., 2018) and performance. 
Accuracy of a model is given by:

 TP TNAccuracy
TP FN FP TN

+
=

+ + +
Precision is defined as “the probability that an object 

is relevant given that it is returned by the system”, recall is 
“the probability that a relevant object is returned” and f1 
score is the harmonic average of the above two (Goutte 
and Gaussier, 2005) and is given by: 

( )  TPPrecision p
TP FP

=
+

 ,  TPRecall
TP FN

=
+

 1 2 Precision RecallF Score
Precision Recall

=
+




The confusion matrix of the models (Table 7) shows 
that the deep neural network (DNN) model 1 correctly 
identifies 28 cases of “fall” and misclassifies 5 cases as “no 
fall” whereas it correctly classifies 18 out of 20 cases of 
“No fall” category. The DNN model 2 correctly classifies 
14 cases of “Local fall” and 16 cases of “Main fall” and 
misclassifies 1 case of each category. Thus, the classifica-
tion ability of the models (Table 8) shows that Model 1 

has an accuracy of 0.87 whereas Model 2 has accuracy of 
0.94 over test data.

Table 6. Confusion matrix

Pr
ed

ic
te

d 
C

la
ss

 F
al

l N
o 

Fa
ll

True Class
No Fall Fall
True Positive (TP) False Positive (FP)

False Negative 
(FN)

True Negative (TN)

Table 7. Confusion matrix of DNN models

Model 1 (No fall(0)/Fall(1) Model 2 (Local fall(0)/ Main 
fall(1)

Table 8. Classification Report of the Models

Model 1 (No fall(0)/ Fall(1))

Model 2 (Local fall(0)/ Main fall(1))

5.3.2 ROC Curves
In statistics, the receiver operating characteristics (ROC) 
curve, is a graphical plot that illustrates the performance 
of a binary classifier system as its discrimination thresh-
old is changed. The curve is plotting the True positive rate 
(specificity) against false positive rate (1-Sensitivity). A 



Ram Bilash Prajapati, Rabindra Kumar Sinha, R. N. Gupta, Sikandar Kumar and Deepti Prajapati

Journal of Mines, Metals and Fuels 179Vol 70 (4) | April 2022 | http://www.informaticsjournals.com/index.php/jmmf

point in ROC space with coordinate (0, 1) represents the 
model with best prediction ability. At the default thresh-
old, ROC curves and the area under the curve (AUC) of 
Model 1 is 0.874 (Figure 11) while that of Model 2 is 0.937 
(Figure 12). The larger the area under the curve the better 
the classification ability of the model (Bradley, 1997).

Table 9. Model architecture

Model 1 Model 2

 Figure 6. ROC and AUC of Model 1.

 Figure 7. ROC and AUC of Model 2.
The structure of the models created can be visualized 

as (Table 9):

6. Conclusions
This study has been performed over two mining blocks 
of East Bokaro and South Karanpura coalfields of India. 
Analysis of each parameter from both the datasets, 
depicts that the occurrence of fall is highly correlated to 
the area of fall. The model forecasts the occurrence of fall 
and the sequence of local and main fall using extraction 
areas and other parameters. For field application, models 
are run with different anticipated extraction areas with 
other parameters to predict fall and to classify local or 
main fall. The set of such anticipated classified areas of 
local and main fall by the models are sequence of falls 
and used as an indicator for taking advance precautions 
against local and main fall in caving panel for safety of 
men and machineries. This study also tries to depict the 
importance of hyper parameter optimization while devel-
oping a neural network model, as a correct choice of hyper 
parameter results in a significant increase in accuracy 
over the same dataset (Figure 10). The model classifies 
local and main fall with substantial accuracy and preci-
sion, however model’s ability to predict the occurrence of 
a fall can still be improved and can be worked upon.
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