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A new model based on the entire rod string buckling
configuration in vertical well tubing is proposed. The
buckling configuration for the rod string constrained in
vertical wellbores is divided into four sections: the bottom
and second suspended sections, the middle helical section
and the top suspended section. The mathematical model not
only includes the bending differential equations above the
four sections, the boundary conditions at two ends, but also
the continuity conditions at contact points whose positions
are variable. The numerical simulation of the entire rod
string buckling configuration is realized through
transforming the mathematical model into non-linear
algebraic equations solved by a genetic algorithm. The
simulation results show that the boundary conditions at the
two ends have little effect on the helical buckling
configuration, but, however, the boundary condition,
especially at the bottom, has a considerable effect on the
configurations of the suspended sections. Compared to the
previous results, the new model provides a more accurate
description of rod string buckling and can simulate a more
genuine buckling configuration of the rod string in the
downhole.

Keywords: Sucker rod string, genetic algorithm, Runge-
Kutta, boundary constraint, buckling configuration.

1. Introduction

The method for calculating the critical buckling load of
rod string in vertical wellbores is the theoretical basis
of predicting and preventing the eccentric wear of rod

and tubing. The rod string buckling in the vertical well tubing
of petroleum engineering field is equivalent to slender rod
buckling in a circular cylinder. Previous studies show that the
buckling configuration of the rod string in a vertical well is
divided into two categories: the plane (two-dimensional) or
approximate plane buckling under the lower axial compression
[1-3]; and the spatial (three-dimensional) buckling under the
higher axial compression [4-15]. The theory about first-order
plane buckling has been studied intensively; however, spatial

buckling has developed continuously with more and more
complicated problems.

Generally, when considering the effect of the boundary
conditions on the configuration of the rod string, the entire
spatial buckling of the rod string in a vertical well is
composed of four sections: the bottom and second
suspended sections, the middle helical section and the top
suspended section.

As regards the spatial buckling of the rod string, the
formula based on the relationship of axial force and the pitch
was obtained by Lubinski under the assumption of isometric
spiral [4]. Then the helical buckling of the rod string was
developed by different methods [6-9], but remained at the
level of weightless helical buckling. Later, some experts began
to research the rod string buckling with weight. Mitchell built
a relatively new model combining the buckling equation of
the rod string and the boundary condition at the bottom end
based on the following two points simplification [12]: (1) the
equation of the helical section is solved by the way of
reduced-order; (2) by only considering the bottom two
suspended sections and the middle helical section, not the
integral rod string, as the research object. So the entire rod
string buckling problem remained unsolved although his
buckling theory made significant progress. Afterwards Gao
[10] established the helical buckling model and obtained the
critical load for one period of the helix, but only considered
the middle helical section local relative to the whole as the
object of the study, so that the relationship between the
buckling equation and the boundary condition was also not
established. Similar to Gao, the calculation method of the
critical helical buckling load of the rod string in an inclined
well was presented by ignoring the bottom and top
suspended sections by Tan et al. [16]. Recently, the entire rod
string model was built by Huang et al. [17] by the approximate
analytic method, which is also based on the simplified
equation and used only a  rod of length limited due to the
limitations of the selected method.

Based on the above unsolved problem and the actual
requirements on eccentric wear of rod and tubing, a new
model of the entire rod string was established, including the
axial distributed load, the boundary conditions at two ends,
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The continuity condition at the contact point b is
expressed by:
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The continuity condition at the contact point c is
expressed by:
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3. Numerical simulation method

Eqs. (9-11) are the fourth-order homogeneous linear ordinary
differential equations with variable coefficients; thus the

analytic solution can be derived directly, and also can be
calculated by the numerical integral method; Eq(4) is a
sophisticated fourth-order non-linear ordinary differential
equation, but it seems impossible to obtain an analytical
solution under the non-simplified condition, so the numerical
solution seems to be the only choice. In this paper, the
numerical simulation model is established by Eqs. (4-5) and
Eqs. (8-21). The helical section equation and the suspended
section equations are solved by the Runge-Kutta method, and
the specific simulation algorithm with the boundary
conditions at two ends and the contact points are given as
follows:
1. The unknown quantity L1, L2, L3 are expressed as x1, x2

and x3, namely, x1=L1, x2=L2 and x3=L3.
2. The boundary conditions at the point A and a of the

bottom suspended section are expressed by:
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Arbitrarily given a set of values x1, x2, x3, x4, x5, x6, x7,
Eq. (9) can be solved and the simulation results of bottom
suspended section at the point a can be obtained as follows:
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3. The boundary condition at the point a of the second
suspended section is expressed by:
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where x8 = θa and ..'
9 ax θ= .

Similar to Eq(23), the simulation result of the second
suspended section at the point b can be obtained by solving
Eq(10) as follows:
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4. The boundary condition at the point b of helical section
is expressed by

{ } { }' '' '''
14 15 16 17, , , , , ,b b b b x x x xθ θ θ θ = ... (26)

Similarly, the simulation results of helical section at the
point c can be obtained by solving Eq(11) as follows:

{ }' '' ''', , ,c c c cθ θ θ θ ...  (27)
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5. The boundary condition at the point ‘B’ and ‘b’ of top
suspended section is expressed by
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The simulation results of top suspended section at the
point c can be obtained by solving Eq(4) as follows:
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Substituting the simulation results of Eq (23), (25), (27),
(29), and the assumed boundary value

of { }1 2 20 21, , , , TX x x x x= L  into Eqs (18-21),  the 21 non-
linear algebraic equations with boundary value are obtained
as follows:
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The numerical solutions of the non-linear algebraic
equations Eq(30) are obtained by the following optimization
algorithm:

Design variable:

{ }1 2 21, , , Tx x x= KX ...  (31)

Objective function:  For any given set of boundary values,
21 corresponding  functions result in Eq (30). By taking the
squared error and minimum as the objective function of
optimization design, the objective function is expressed by:

( ) ( )2 2 2
1 2 21in inM G M f f f= + + +LX ... (32)

Constraint condition:  only considering the constraint
condition in each design variable itself, that is ximin<xi<ximax
(i=1,2,...,21).

Optimization algorithm: the mathematical model
established for the optimal design with unknown boundary
value is a constrained non-linear optimization problem, and
the optimal solution of Eq(30) can be obtained by the genetic
algorithm.

4. Results and discussions
The basic parameters: the diameter of the rod string D =
25mm; the elastic modulus E = 209GPa; the axial distribution
force q = 25N/m; radial clearance r0 = 0.0185m; to ensure the

Fig.2 The integral buckling configuration of rod string. (a) the main
view, (b) the top view, (c) the front view
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neutral point inside the rod string, the rod length is given
separately. In the following diagram, F-F represents the fixed
boundary at two ends; P-P represents the pinned boundary
at two ends.
4.1 BUCKLING CONFIGURATION OF THE ROD STRING

Let L = 200m, F = 3000N, based on the above simulation
method, the integral buckling configuration of rod string is
obtained with the boundary conditions at two fixed ends as
shown in Fig.2.
4.2 EFFECT OF THE BOUNDARY CONDITIONS ON THE BUCKLING

CONFIGURATION OF THE ROD STRING

4.2.1 Effect of boundary conditions on the helical section
buckling configuration

After obtaining the simulation results of the integral rod
string buckling configuration, we extract the helical section
buckling configuration for analysis. Fig.3 shows us that the
deformation curves under the two fixed ends almost coincides
completely with the two pinned ends under the same axial
compression load, which indicates that the configuration is
effected very little by the boundary conditions.

boundaries are both significantly higher than under the two
pinned ends boundaries. Further, the distance 1ξ  and 

2ξ

 is
almost coincident with the bottom end boundary though with
a different top end boundary. The results indicate that the
configurations of suspended sections are effected greatly by
the bottom boundary condition but insignificantly by the top
boundary condition.
4.3 THE LAW OF CONTACT FORCE

The value of the contact force between the rod and tubing
determines the degree of the eccentric wear. Fig.6 shows us
that the law of change for the contact force at the helical
section increases with the increase of the axial compression
at the bump end and also different boundary conditions. From
Fig.6, we see that the contact force near the beginning of the
helical section is somewhat different, but from the whole
helical section perspective, the contact force is basically the
same under the different boundary conditions P-P and F-F.

Fig.4 The derivative of angle at contact point changes with the
pump end load

Fig.5 The contact point position changes with the pump end load
and boundary constraints

Fig.3 The unfolded curve of helical section

4.2.2 Effect of the boundary conditions on the suspended
sections

The derivative of the angle at the cut-in point of the helical
section is an important factor which effects the configuration
of the helical section and the bottom second suspended
section. Fig.4 shows us that the difference of the derivative
value of the angle between the two fixed ends and the two
pinned ends at contact point b is very subtle but great at
contact point a. The results indicate that the configuration of
the helical section is effected very little by the boundary
conditions but is affected greatly on the configuration of the
bottom suspended section. This is further proved in Fig.5
with the rod length being L = 200m. From Fig.5, we can see
that the distance ξ1 and ξ2 under the two fixed ends
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4.4 COMPARISON WITH THE SIMPLIFIED EQUATION AT THE HELICAL

SECTION

In the previous studies, the equation at the helical section
was once simplified to Eqs (6-7). In this paper, the comparison
results with the previous ones are given in Fig.7 and Fig.8.
We can see that the results of the simplified equation are
different from the results of the complete equation which
mainly reflected in the beginning and the end of the helical
section. Firstly, the contact force near the beginning of the
helical section is relatively large in Fig.7; Secondly, the angle
increment of the helical section near the end is lower in Fig.8.
So the helical buckling simulation results of the simplified
equation are larger error compared to the actual buckling
condition and is not conducive to compute the rod eccentric
wear life. In fact the contact force near the end of the helical
section is also different between them, here it is not discussed
with little meaning compared to the above factors.

Fig. 6 The contact force comparison results under different
boundary conditions

Fig.7 The contact force comparison results between simplified and
non-simplified equation

Fig.8 The comparison results of helix angle between simplified and
non-simplified equation

5. Conclusions
1. In this paper, a new model based on the entire rod string

buckling configuration in vertical well tubing is presented.
First, this model is established through a complete, not
simplified, buckling equation with weight in four sections.
Second, this model is built with a continuity condition at
the contact point whose position is variable.

2. The simulation results show that the effect of the
boundary condition on the configuration of the helical
section and contact force is very little and can be ignored.
However, the effects of the boundary conditions,
especially at the bottom on the configurations of the
suspended sections, are significant.

3. The method for simplifying the equation of the helical
section can effect the configuration and contact force of
the helical section. Firstly, the contact force located near
the beginning of the helical section is different from the
complete equation of the helical section; secondly, the
angle increment of the helical section is larger than the
actual condition.
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