Subject: NATURAL GAS ENGINEERING

Instructions: (i) ANY MISSING DATA MAY BE ASSUMED AND STATED

(ii) A total no. of six pages containing Graphs/Tables to be provided

		Time: 3 hrs.	Max. Marks: 100	
Q.No.		Sectio	on-A	Marks
		Answer any two questions		
1.	 (a) Calculate the initial oil and gas in place per acre-foot for a gas condensate reservoir. <i>Given:</i> Initial pressure 3650 psia; Reservoir temperature 230°F; Average porosity 30%; Average 			7+3+5+5=20
		connate water 25% Daily tank oil 250bbl; Oil g 3200MCF; Separator gas gravity 0.68 Daily tan		
	(b)	(b) From the above data, calculate the total daily gas-condensate production in SCF and the total daily reservoir voidage.		
	(c)	Define and explain reservoir types with the hel	p of phase diagram.	
	(d)	Explain retrograde condensation phenomena w	ith molecular theories.	
2.	(a)	A sour gas at 1000psia has the following analys = 77.6%, $C_2 = 5.8\%$, $C_3 = 1.9\%$, $n-C_4 = 0.1\%$, i water content of this gas at 120°F? Use at least	$-C_4 = 0.1\%$ and $i-C_5 = 0.1\%$. What is the	10+4+6=20
	(b)	What are gas hydrates? With a neat phase diagra	m explain gas hydrate formation phenomena.	
	(c)	List three methods for preventing gas hydrate a contrast these three methods.	formation at well sites. Compare and	
3.	(a)	A natural gas pipe line of original length (L_A +I to L_A . Develop an expression for the rates of f (d_A , d_B , d_C) and friction factors (f_A , f_B , f_C) of t	low (q_{new}/q_{old}) in terms of lengths, diameters	10+10 = 20
		What fraction of the original length must be lo	oped to increase the flow rate by 50%?	
	(b)	Calculate the minimum throughput of a 21.25 in using Weymouth equation. Fix upstream pressure minimum pressure. Data given: $C = 0.05, Y = 0.40, S = 35,000$ psia, $T_{AV} = 100^{\circ}$ F.		
4.	 A gas field delivers 13.4MMscf/d of a 0.68 gravity gas and 300bbl/d oil with a 50% water cut. For an operating pressure of 1000 psig and temperature of 80°F, (i) Determine the ID of the spherical separater required to accommodate the liquid and gas, assuming a retention time of 5 minutes. (ii) How much more gas can be flowed through the separator without worrying about gas capacity? 		10	
5		From the basic mechanical energy balance equation, derive the general equation for steady state isothermal flow of a gas through a horizontal pipe.		10
6.		MEA, DEA and MDEA are used during the desulfurization of sour natural gas. List three most important properties in favour and against each of these solvents.		10
7.		ive from primary system energy change concep- ulating flowing well bore pressure at the bottom		10
8.	Using analytic approach, explain the design procedure of a multistage compressor for the determination of ideal horsepower required per MMscfd for a gas production field for the compression of the produced gas.		10	
9.		ive from primary system energy change conceptulating flowing well bore pressure at the bottom		10