Unified Extensions of Strongly Reversible Rings and Links with Other Classic Ring Theoretic Properties
Abstract
Keywords
Subject Discipline
References
Agayeb, N., Haramanei, A. and Halicioglu, S. : On abelian rings,Turk. J. Math. 33 (2009), 1-10.
Anderson, D. D. and Camillo, V. : Semigroups and rings whose zero products commute, Comm. Algebra, 27 (6) (1999), 2847-2852.
Antoine, R. : Nilpotent elements and Armendariz rings, J. Algebra, 319 (2008), 3128-3140.
Armendariz, E. P. : A note on extensions of Baer and p.p.-rings, J. Aust. Math. Soc., 18 (1974), 470-473.
Camillo, V. and Nielsen, P. P. : McCoy rings and zero-divisors, J. Pure Appl. Algebra, 212 (2008), 599-615.
Cohn, P. M. : Reversible rings, Bull. London Math. Soc., 31 (1999), 641-648.
Diesl, A. J., Hon, C. Y., Kim, N. K. and Nielson, P. P., Properties which do not pass to classical rings of quotient, J. Algebra 379 (2013) 208-222.
Jeon, J. C., Kim, H. K., Lee, Y. and Yoon, J.S. : On weak Armendariz rings, Bull. Korean Math. Soc., 46 (1) (2009), 135-146.
Kim, N. K., and Lee, Y. : Armendariz rings and reduced rings, J. Algebra, 223 (2000), 477-488.
Kim, N. K., and Lee, Y. : On right quasi-duo rings which are Pi-regular, Bull. Korean Math. Soc. 37 (2) (2000), 217-227.
Kim, N. K., and Lee, Y. : Extensions of reversible rings, J. Pure Appl. Algebra, 185 (2003), 207-223.
Krempa, J. and Niewieczerzal, D. : Rings in which annihilators are ideals and their application to semigroup rings, Bull. Acad. Polon. Sci. Ser. Sci., Math. Astronom. Phys., 25 (1977), 851-856.
Lam, T. Y. : A First Course in Noncommutative Rings, Springer-Verlage, New York, 1991.
Lee, T. K. and Wong, T. L. : On Armendariz rings, Houston J. Math., 29 (3) (2003), 583-593.
Marks, G. : A taxonomy of 2-primal rings, J. Algebra, 266 (2003), 494-520.
Marks, G., Mazurek, R. and Ziembowski, M. : A unied approach to various generalization of Armendariz rings, Bull. Aust. Math. Soc., 81 (2010), 361-397.
Nagata, M. : Local Rings, Interscience, New York, 1962.
Nielsen, P. P. : Semicommutative and the McCoy condition, J. Algebra, 298 (2006), 134-141.
Rege, M. B. and Chhawchharia, S. : Armendariz rings, Proc. Japan Acad. Sci. A Math. Sci., 73 (1997), 14-17.
Singh, A. B., Juyal, P., and Khan, M. R., : Strongly reversible rings relative to monoid, Int. J. Pure Appl. Math. 63 (1) (2010), 1-7.
Yang, G. and Liu, Z. : On strongly reversible rings, Taiwanese J. Math., 12 (1) (2008), 129-136.
Refbacks
- There are currently no refbacks.