Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry: Complementary Approaches to Analyze the Metabolome

Jump To References Section

Authors

  • Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune - 411008, Maharashtra ,IN
  • Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune - 411008, Maharashtra ,IN

DOI:

https://doi.org/10.18311/jer/2020/27221

Keywords:

Cryoprobe, Metabolic Imaging, Metabolomics, Signal-to-Noise, Time-of-Flight

Abstract

Over the last decade, the rapid advancement of analytical technologies has made it feasible for researchers to target a wider area of any given biological sample. Metabolomics, an emerging field of scientific research, involves studying the endogenously synthesized small molecules within the biological system. This recently developed ‘omics' platform has been used for the discovery of disease-specific biomarkers; and for providing deep insights into the etiology and progression of a variety of endocrine disorders, including type 2 diabetes, polycystic ovarian syndrome, Addison's disease, etc. Nuclear Magnetic Resonance (NMR) spectroscopy and Mass Spectrometry (MS) are the two most powerful and information-rich analytical platforms that have currently been employed in metabolomics studies worldwide. The unique properties of NMR, including a high degree of reproducibility, relative ease of sample preparation, highly quantitative nature, and inherently non-destructive nature, have made it an eminent technique useful in several disciplines of metabolomics. However, a major drawback of this approach is its low sensitivity (≥ 1 μM) when compared with MS. Conversely, MS has the potential to detect the metabolites in the femtomolar to the attomolar range and has a higher resolution (∼103-104) relative to NMR, but quantification and sample preparation are a little cumbersome. This mini-review discusses the assets and limitations of NMR and MS approaches for metabolomic studies and the latest emerging technological developments that are being used to cope with these limitations in metabolic applications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2021-04-16

How to Cite

Yousf, S., & Chugh, J. (2021). Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry: Complementary Approaches to Analyze the Metabolome. Journal of Endocrinology and Reproduction, 24(1), 21–30. https://doi.org/10.18311/jer/2020/27221

Issue

Section

Review Article

 

References

Hiller-Sturmhofel S, Bartke A. The endocrine system: an overview. Alcohol Health Res World. 1998; 22(3):153-164.

Lin HT, Cheng ML, Lo CJ, Lin G, Lin SF, Yeh JT, et al. 1 H Nuclear Magnetic Resonance (NMR)- dased cerebrospinal fluid and plasma metabolomic analysis in type 2 diabetic patients and risk prediction for diabetic microangiopathy. J Clin Med. 2019; 8(6):874. https://doi.org/10.3390/jcm8060874. PMid:31248127 PMCid:PMC6616639.

Del Coco L, Vergara D, De Matteis S, Mensa E, Sabbatinelli J, Prattichizzo F, et al. NMR-based metabolomic approach tracks potential serum biomarkers of disease progression in patients with type 2 diabetes mellitus. J Clin Med. 2019; 8(5):720. https://doi.org/10.3390/jcm8050720. PMid:31117294 PMCid:PMC6571571.

Merino J, Leong A, Liu CT, Porneala B, Walford GA, von Grotthuss M, et al. Metabolomics insights into early type 2 diabetes pathogenesis and detection in individuals with normal fasting glucose. Diabetologia. 2018; 61(6):1315-1324. https://doi.org/10.1007/s00125-0184599-x. PMid:29626220 PMCid:PMC5940516.

Couto Alves A, Valcarcel B, Makinen VP, Morin-Papunen L, Sebert S, Kangas AJ, et al. Metabolic profiling of polycystic ovary syndrome reveals interactions with abdominal obesity. Int J Obes (Lond). 2017; 41(9):13311340. https://doi.org/10.1038/ijo.2017.126. PMid:28546543 PMCid:PMC5578435.

Jia C, Xu H, Xu Y, Xu Y, Shi Q. Serum metabolomics analysis of patients with polycystic ovary syndrome by mass spectrometry. Mol Reprod Dev. 2019; 86(3):292-297. https://doi.org/10.1002/mrd. 23104. PMid:30624822.

Atiomo W, Daykin CA. Metabolomic biomarkers in women with polycystic ovary syndrome: a pilot study. Mol Hum Reprod. 2012; 18(11):546-553. https://doi.org/10.1093/ molehr/gas029. PMid:22809877.

Struja T, Eckart A, Kutz A, Neyer P, Kraenzlin M, Mueller B, et al. Metabolomics and their ability to distinguish thyroid disorders: A retrospective pilot study. Horm Metab Res. 2019; 51(4):256-260. https://doi.org/10.1055/a-0850-9691. PMid:30791054.

Liu J, Fu J, Jia Y, Yang N, Li J, Wang G. Serum metabolomic patterns in patients with autoimmune thyroid disease. Endocr Pract. 2020; 26(1):82-96. https://doi.org/10.4158/ EP-2019-0162. PMid:31557082.

Piras C, Pibiri M, Leoni VP, Balsamo A, Tronci L, Arisci N, et al. Analysis of metabolomics profile in hypothyroid patients before and after thyroid hormone replacement. J Endocrinol Invest. 2020. https://doi.org/10.1007/s40618020-01434-y. PMid:33025552.

Espiard S, McQueen J, Sherlock M, Ragnarsson O, Bergthorsdottir R, Burman P, et al. Improved urinary cortisol metabolome in addison's disease: A prospective trial of dualrelease hydrocortisone. J Clin Endocrinol Metab. 2020. https://doi.org/10.1210/clinem/dgaa862. PMid:33236103.

Li J, Guan L, Zhang H, Gao Y, Sun J, Gong X, et al.Endometrium metabolomic profiling reveals potential biomarkers for diagnosis of endometriosis at minimal-mild stages. Reprod Biol Endocrinol. 2018; 16(1):42. https:// doi.org/10.1186/s12958-018-0360-z. PMid:29712562 PMCid:PMC5928574.

Zhang X, Xu H, Li GH, Long MT, Cheung CL, Vasan RS, et al. Metabolomics insights into osteoporosis through association with bone mineral density. J Bone Miner Res. 2021. https://doi.org/10.1101/2021.01.16.21249919.

Lv H, Jiang F, Guan D, Lu C, Guo B, Chan C, et al. Metabolomics and its application in the development of discovering biomarkers for osteoporosis research. Int J Mol Sci. 2016; 17(12). https://doi.org/10.3390/ijms17122018. PMid:27918446 PMCid:PMC5187818.

Miyamoto T, Hirayama A, Sato Y, Koboyashi T, Katsuyama E, Kanagawa H, et al. A serum metabolomics-based profile in low bone mineral density postmenopausal women. Bone. 2017; 95:1-4. https://doi.org/10.1016/j.bone.2016.10.027. PMid:27989648.

Pontes TA, Barbosa AD, Silva RD, Melo-Junior MR, Silva RO. Osteopenia-osteoporosis discrimination in postmenopausal women by 1H NMR-based metabonomics. PLoS One. 2019; 14(5):e0217348. https://doi.org/10.1371/journal.pone.0217348. PMid:31141566 PMCid:PMC6541380.

Saleem Y, Nazia H, Shilpy S, Jeetender C. Identification & characterization of secondary metabolites in the biological soup by NMR spectroscopy. 2017; 6:47-96. https://doi.org/ 10.2174/9781681084398117060004.

Dettmer K, Aronov PA, Hammock BD. Mass spectrometrybased metabolomics. Mass spectrometry reviews. 2007; 26(1):51-78. https://doi.org/10.1002/mas.20108. PMid:16921475 PMCid:PMC1904337.

Dunn WB, Ellis DI. Metabolomics: Current analytical platforms and methodologies. Trends Analyt Chem. 2005; 24(4):285-294. https://doi.org/10.1016/j.trac.2004.11.021.

Pan Z, Raftery D. Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Analytical and bioanalytical chemistry. 2007; 387(2):525527. https://doi.org/10.1007/s00216-006-0687-8. PMid: 16955259.

Levitt M, Försterling F. Spin dynamics: Basics of Nuclear Magnetic Resonance, Second Edition. Medical Physics MED PHYS. 2010; 37. https://doi.org/10.1118/1.3273534.

Song Z, Wang H, Yin X, Deng P, Jiang W. Application of NMR metabolomics to search for human disease biomarkers in blood. Clin Chem Lab Med (CCLM). 2019; 57(4):417-441. https://doi.org/10.1515/cclm-2018-0380. PMid:30169327.

Kruk J, Doskocz M, Jodlowska E, Zacharzewska A, Lakomiec J, Czaja K, et al. NMR Techniques in metabolomic studies: A quick overview on examples of utilization. ApplMagn Reson. 2017; 48(1):1-21. https://doi.org/10.1007/s00723016-0846-9. PMid:28111499 PMCid:PMC5222922.

Rizvi A, Yousf S, Balakrishnan K, Dubey HK, Mande SC, Chugh J, et al. Metabolomics studies to decipher stress responses in Mycobacterium smegmatis Point to a Putative Pathway of Methylated Amine Biosynthesis. J Bacteriol. 2019; 201(15):e00707- e00718.

Molinski TF. NMR of natural products at the ‘nanomolescale'. Nat Prod Rep. 2010; 27(3):321-329. https://doi.org/10.1039/b920545b. PMid:20179874.

Tripathi P, Somashekar BS, Ponnusamy M, Gursky A, Dailey S, Kunju P, et al. HR-MAS NMR tissue metabolomic signatures cross-validated by mass spectrometry distinguish bladder cancer from benign disease. J Proteome Res. 2013; 12(7):3519-3528. https://doi.org/10.1021/pr4004135. PMid:23731241 PMCid:PMC3722911.

Wilson M, Davies NP, Brundler M-A, McConville C, Grundy RG, Peet AC. High resolution magic angle spinning 1H NMR of childhood brain and nervous system tumours. Mol Cancer. 2009; 8(1):6. https://doi.org/10.1186/14764598-8-6. PMid:19208232 PMCid:PMC2651110.

Eddy MT, Belenky M, Sivertsen AC, Griffin RG, Herzfeld J. Selectively dispersed isotope labeling for protein structure determination by magic angle spinning NMR. J Biomol NMR. 2013; 57(2):129-139. https://doi.org/10.1007/ s10858-013-9773-3. PMid:23990199 PMCid:PMC3793012.

Zhao MX, Gao XX, Qi J, Yao HW, Li HZ, Xu YZ, et al. [Study on the malignant and normal rectum tissues using 1H NMR spectroscopy]. Guang pu xue yu guang pu fen xi = Guang pu. 2008; 28(2):308-12.

Elbayed K, Berl V, Debeuckelaere C, Moussallieh FM, Piotto M, Namer IJ, et al. HR-MAS NMR spectroscopy of reconstructed human epidermis: potential for the in situ investigation of the chemical interactions between skin allergens and nucleophilic amino acids. Chem Res Toxicol. 2013; 26(1):136-145. https://doi.org/10.1021/tx300428u. PMid:23256819.

Koito Y, Yamada K, Ando S. Solid-state NMR and wide-angle X-ray diffraction study of hydrofluoroether/íŸ-cyclodextrin inclusion complex. J Inclu Phenom Macr. 2013; 76(1):143150. https://doi.org/10.1007/s10847-012-0183-z.

Datir SS, Yousf S, Sharma S, Kochle M, Ravikumar A, Chugh J. Cold storage reveals distinct metabolic perturbations in processing and non-processing cultivars of potato (Solanum tuberosum L.). Sci Rep. 2020; 10(1):6268. https:// doi.org/10.1038/s41598-020-63329-5. PMid:32286457 PMCid:PMC7156394.

Park I, Larson PE, Zierhut ML, Hu S, Bok R, Ozawa T, et al. Hyperpolarized 13C magnetic resonance metabolic imaging: application to brain tumors. Neuro-oncology. 2010; 12(2):133-144. https://doi.org/10.1093/neuonc/ nop043. PMid:20150380 PMCid:PMC2940577.

Wishart DS. Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov. 2016; 15(7):473-484. https://doi.org/10.1038/ nrd.2016.32. PMid:26965202.

Consonni R, Cagliani LR. The potentiality of NMR-based metabolomics in food science and food authentication assessment. Magn Reson Chem. 2019; 57(9):558-578. https://doi.org/10.1002/mrc.4807. PMid:30447115.

Zhang L, Hatzakis E, Patterson AD. NMR-based metabolomics and its application in drug metabolism and cancer research. Curr Pharmacol Rep. 2016; 2(5):231-240. https://doi.org/10.1007/s40495-016-0067-9.

Hall RD, Brouwer ID, Fitzgerald MA. Plant metabolomics and its potential application for human nutrition. Physiol Plant. 2008; 132(2):162-175.

Clayton TA, Lindon JC, Cloarec O, Antti H, Charuel C, Hanton G, et al. Pharmaco-metabonomic phenotyping and personalized drug treatment. Nature. 2006; 440(7087):1073-1077. https://doi.org/10.1038/ nature04648. PMid:16625200.

Lindon JC, Nicholson JK, Holmes E, Everett JR. Metabonomics: Metabolic processes studied by NMR spectroscopy of biofluids. Concepts in Magn Reson. 2000; 12(5):289-320. https://doi.org/10.1002/10990534(2000)12:5<289::AID-CMR3>3.0.CO; 2-W.

Yousf S, Sardesai DM, Mathew AB, Khandelwal R, Acharya JD, Sharma S, et al. Metabolic signatures suggest o-phosphocholine to UDP-N-acetylglucosamine ratio as a potential biomarker for high-glucose and/or palmitate exposure in pancreatic íŸ-cells. Metabolomics. 2019; 15(4):55. https://doi.org/10.1007/s11306-019-1516-3. PMid:30927092.

Mahrous EA, Farag MA. Two dimensional NMR spectroscopic approaches for exploring plant metabolome: A review. J Adv Res. 2015; 6(1):3-15. https://doi.org/10.1016/j.jare.2014.10.003. PMid:25685540 PMCid:PMC4293671.

Befroy DE, Shulman GI. Magnetic resonance spectroscopy studies of human metabolism. Diabetes. 2011; 60(5):13611369. https://doi.org/10.2337/db09-0916. PMid:21525507 PMCid:PMC3292308.

van der Graaf M. In vivo magnetic resonance spectroscopy: basic methodology and clinical applications. Eur Biophys J. 2010; 39(4):527-540. https://doi.org/10.1007/s00249-0090517-y. PMid:19680645 PMCid:PMC2841275.

Grover VPB, Tognarelli JM, Crossey MME, Cox IJ, TaylorRobinson SD, McPhail MJW. Magnetic Resonance Imaging: Principles and techniques: Lessons for clinicians. J Clin Exp Hepatol. 2015; 5(3):246-255. https://doi.org/10.1016/j.jceh.2015.08.001. PMid:26628842 PMCid:PMC4632105.

Siddiqui S, Kadlecek S, Pourfathi M, Xin Y, Mannherz W, Hamedani H, et al. The use of hyperpolarized carbon-13 magnetic resonance for molecular imaging. Adv Drug Deliv Rev. 2017; 113:3-23. https://doi.org/10.1016/j. addr.2016.08.011. PMid:27599979 PMCid:PMC5783573.

Golman K, Ardenkjí¦r-Larsen JH, Petersson JS, Månsson S, Leunbach I. Molecular imaging with endogenous substances. Proc Natl Acad Sci. 2003; 100(18):10435. https://doi.org/10.1073/pnas.1733836100. PMid:12930896 PMCid:PMC193579.

Miloushev VZ, Keshari KR, Holodny AI. Hyperpolarization MRI: Preclinical models and potential applications in neuroradiology. Top Magn Reson Imaging. 2016; 25(1):31-37. https://doi.org/10.1097/RMR.0000000000000076. PMid:26848559 PMCid:PMC4968075.

Bhattacharya P, Ross BD, Bünger R. Cardiovascular applications of hyperpolarized contrast media and metabolic tracers. Exp Biol Med. (Maywood, NJ). 2009; 234(12):1395-416. https://doi.org/10.3181/0904-MR-135. PMid:19934362.

Dutta P, Salzillo TC, Pudakalakatti S, Gammon ST, Kaipparettu BA, McAllister F, et al. Assessing Therapeutic efficacy in real-time by hyperpolarized magnetic resonance metabolic imaging. Cells. 2019; 8(4). https://doi.org/10.3390/cells8040340. PMid:30978984 PMCid:PMC6523855.

Jiménez B, Mirnezami R, Kinross J, Cloarec O, Keun HC, Holmes E, et al. 1H HR-MAS NMR spectroscopy of tumorinduced local metabolic "field-effects” enables colorectal cancer staging and prognostication. J Proteome Res. 2013; 12(2):959-968. https://doi.org/10.1021/pr3010106. PMid:23240862.

Bankefors J, Kaszowska M, Schlechtriem C, Pickova J, Brännäs E, Edebo L, et al. A comparison of the metabolic profile on intact tissue and extracts of muscle and liver of juvenile Atlantic salmon (Salmo salar L.) - Application to a short feeding study. Food Chem. 2011; 129(4):1397-1405. https://doi.org/10.1016/j.foodchem.2011.05.081.

Dietz C, Ehret F, Palmas F, Vandergrift LA, Jiang Y, Schmitt V, et al. Applications of high-resolution magic angle spinning MRS in biomedical studies II-Human diseases. NMR in Biomed. 2017; 30(11). https://doi.org/10.1002/ nbm.3784. PMid:28915318 PMCid:PMC5690552.

Jensen HM, Bertram HC. The magic angle view to food: magic-angle spinning (MAS) NMR spectroscopy in food science. Metabolomics. 2019; 15(3):44. https://doi.org/10.1007/s11306-019-1504-7. PMid:30868337.

Alam T. HR-MAS NMR Spectroscopy in Material Science. 2012. p. 279-306.

Beckonert O, Coen M, Keun HC, Wang Y, Ebbels TM, Holmes E, et al. High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nature Protocols. 2010; 5(6):1019-1032. https://doi.org/10.1038/nprot.2010.45. PMid:20539278.

Tilgner M, Vater TS, Habbel P, Cheng LL. High-Resolution Magic Angle Spinning (HRMAS) NMR methods in metabolomics. Meth Mol Biol. (Clifton, NJ). 2019; 2037:49-67. https://doi.org/10.1007/978-1-4939-9690-2_4. PMid:31463839.

Nishiyama Y, Endo Y, Nemoto T, Bouzier-Sore AK, Wong A. High-resolution NMR-based metabolic detection of microgram biopsies using a 1 mm HRµMAS probe. Analyst. 2015; 140(24):8097-8100. https://doi.org/10.1039/ C5AN01810B. PMid:26563772.

Lucas-Torres C, Wong A. Current developments in µMAS NMR analysis for metabolomics. Metabolites. 2019; 9(2):29. https://doi.org/10.3390/metabo9020029. PMid:30736341 PMCid:PMC6410107.

Farooq H, Soong R, Simpson A, Courtier-Murias D, Bermel W, Kingery W. HR-MAS NMR spectroscopy: A practical guide for natural samples. Curr Org Chem. 2013; 17. https://doi.org/10.2174/13852728113179990126.

Ardenkjaer-Larsen JH, Boebinger GS, Comment A, Duckett S, Edison AS, Engelke F, et al. Facing and overcoming sensitivity challenges in biomolecular nmr spectroscopy. Angewandte Chemie (International ed in English). 2015; 54(32):9162-9185. https://doi.org/10.1002/anie.201410653.PMid:26136394 PMCid:PMC4943876.

Kovacs H, Moskau D, Spraul M. Cryogenically cooled probe” a leap in NMR technology. Prog Nuc Magn Reson Spectrosc. 2005; 46:131-155. https://doi.org/10.1016/j.pnmrs.2005.03.001.

Lee JH, Okuno Y, Cavagnero S. Sensitivity enhancement in solution NMR: emerging ideas and new frontiers. J Mag Resonance (San Diego, Calif: 1997). 2014; 241:18-31. https://doi.org/10.1016/j.jmr.2014.01.005. PMid:24656077 PMCid:PMC3967054.

Johnson JB. Thermal agitation of electricity in conductors. Phys Rev. 1928; 32(1):97-109. https://doi.org/10.1103/ PhysRev.32.97.

Lumata L, Yang C, Ragavan M, Carpenter N, DeBerardinis RJ, Merritt ME. Chapter Two - hyperpolarized 13c magnetic resonance and its use in metabolic assessment of cultured cells and perfused organs. In: Metallo CM, editor. Methods Enzymol. 561: Academic Press; 2015. p. 73-106. https:// doi.org/10.1016/bs.mie.2015.04.006. PMid:26358902 PMCid:PMC4729302.

Atta-ur R, Choudhary MI, Atia-tul W. Chapter 3 - Sensitivity Enhancement. In: Attaur R, Choudhary MI, Atiatul W, editors. Solving Problems with NMR Spectroscopy (Second Edition). Boston: Academic Press; 2016. p. 99-132. https:// doi.org/10.1016/B978-0-12-411589-7.00003-6.

Martin GE. Small-Volume and High-Sensitivity NMR Probes. In: Webb GA, editor. Annual Reports on NMR Spectroscopy. 56: Academic Press; 2005. p. 1-96. https:// doi.org/10.1016/S0066-4103(05)56001-0.

Dalisay DS, Molinski TF. NMR Quantitation of natural products at the nanomole scale. J Nat Prod. 2009; 72(4):739744. https://doi.org/10.1021/np900009b. PMid:19399996.

Schroeder FC, Gronquist M. Extending the scope of NMR spectroscopy with microcoil probes. Angewandte Chemie. 2006; 45(43):7122-7131. https://doi.org/10.1002/ anie.200601789. PMid:16991159.

Kovtunov KV, Pokochueva EV, Salnikov OG, Cousin SF, Kurzbach D, Vuichoud B, et al. Hyperpolarized NMR Spectroscopy: d-DNP, PHIP, and SABRE techniques. Chem Asian J. 2018. https://doi.org/10.1002/asia.201800551 PMid:29790649 PMCid:PMC6251772.

Zhenfeng Pang HG, Lina Gao,Weicheng Cao,Jinglin Yin,Xueqian Kong. Fundamentals and applications of NMR hyperpolarization techniques. Acta Phys -Chim Sin. 2020; 36(4):1906018.

Tran NT, Mentink-Vigier F, Long JR. Dynamic Nuclear Polarization of Biomembrane Assemblies. Biomolecules. 2020; 10(9):1246. https://doi.org/10.3390/biom10091246. PMid:32867275 PMCid:PMC7565305.

Sze KH, Wu Q, Tse HS, Zhu G. Dynamic nuclear polarization: new methodology and applications. Top Curr Chem. 2012; 326:215-242. https://doi.org/10.1007/128_2011_297. PMid:22057860.

Ardenkjí¦r-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, et al. Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci. 2003; 100(18):10158. https://doi.org/10.1073/ pnas.1733835100. PMid:12930897 PMCid:PMC193532.

Picó Y. Chapter 1 - Mass Spectrometry in food quality and safety: An overview of the current status. In: Picó Y, editor. Comprehensive Analytical Chemistry. 68: Elsevier; 2015. p. 3-76. https://doi.org/10.1016/B978-0-444-633408.00001-7.

Marshall DD, Powers R. Beyond the paradigm: Combining mass spectrometry and nuclear magnetic resonance for metabolomics. Prog Nucl Magn Reson Spectrosc. 2017; 100:1-16. https://doi.org/10.1016/j.pnmrs.2017.01.001. PMid:28552170 PMCid:PMC5448308.

Scalbert A, Brennan L, Fiehn O, Hankemeier T, Kristal BS, van Ommen B, et al. Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics. 2009; 5(4):435-458. https://doi.org/10.1007/ s11306-009-0168-0. PMid:20046865 PMCid:PMC2794347.

Bedair M, Sumner LW. Current and emerging massspectrometry technologies for metabolomics. TrAC Tr Anal Chem. 2008; 27(3):238-250. https://doi.org/10.1016/j.trac.2008.01.006.

Sumner LW, Mendes P, Dixon RA. Plant metabolomics: large-scale phytochemistry in the functional genomics era. Phytochemistry. 2003; 62(6):817-836. https://doi.org/10.1016/S0031-9422(02)00708-2.

Babushok VI, Linstrom PJ, Reed JJ, Zenkevich IG, Brown RL, Mallard WG, et al. Development of a database of gas chromatographic retention properties of organic compounds. J Chromato. A. 2007; 1157(1-2):414-21. https:// doi.org/10.1016/j.chroma.2007.05.044. PMid:17543315.

Kind T, Wohlgemuth G, Lee DY, Lu Y, Palazoglu M, ShahbazS, et al. FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-offlight gas chromatography/mass spectrometry. Analytical Chem. 2009; 81(24):10038-10048. https://doi.org/10.1021/ ac9019522. PMid:19928838 PMCid:PMC2805091.

Theodoridis G, Gika HG, Wilson ID. LC-MS-based methodology for global metabolite profiling in metabonomics/metabolomics. TrAC T Anal Chem. 2008; 27(3):251-260. https://doi.org/10.1016/j.trac.2008.01.008.

Naser FJ, Mahieu NG, Wang L, Spalding JL, Johnson SL, Patti GJ. Two complementary reversed-phase separations for comprehensive coverage of the semipolar and nonpolar metabolome. Analytical and bioanalytical chemistry. 2018; 410(4):1287-1297. https://doi.org/10.1007/s00216-0170768-x. PMid:29256075 PMCid:PMC5776055.

Bajad SU, Lu W, Kimball EH, Yuan J, Peterson C, Rabinowitz JD. Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry. J Chromatog. A. 2006; 1125(1):76-88. https://doi.org/10.1016/j.chroma.2006.05.019. PMid:16759663.

Emwas AH. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Methods Mol Biol (Clifton, NJ). 2015; 1277:161-193. https://doi.org/10.1007/978-1-49392377-9_13. PMid:25677154.

Carrasco-Pancorbo A, Nevedomskaya E, ArthenEngeland T, Zey T, Zurek G, Baessmann C, et al. Gas Chromatography/Atmospheric Pressure Chemical Ionization-Time of Flight Mass Spectrometry: Analytical validation and applicability to metabolic profiling. Anal Chem. 2009; 81(24):10071-10079. https://doi.org/10.1021/ ac9006073. PMid:19924863.

Tugizimana F, Steenkamp PA, Piater LA, Dubery IA. Mass spectrometry in untargeted liquid chromatography/ mass spectrometry metabolomics: Electrospray ionisation parameters and global coverage of the metabolome. Rapid Commun Mass Spectrometry: RCM. 2018; 32(2):121-132. https://doi.org/10.1002/rcm.8010. PMid:28990281.

Commisso M, Anesi A, Dal Santo S, Guzzo F. Performance comparison of electrospray ionization and atmospheric pressure chemical ionization in untargeted and targeted liquid chromatography/mass spectrometry based metabolomics analysis of grapeberry metabolites. Rapid Commun Mass Spectrometry. 2017; 31(3):292-300. https:// doi.org/10.1002/rcm.7789. PMid:27935129.

Aretz I, Meierhofer D. Advantages and pitfalls of mass spectrometry based metabolome profiling in systems biology. I J Mol Sci. 2016; 17(5). https://doi.org/10.3390/ ijms17050632. PMid:27128910 PMCid:PMC4881458.

Annesley TM. Ion suppression in mass spectrometry. Clin Chem. 2003; 49(7):1041-1044. https://doi.org/10.1373/49.7.1041. PMid:12816898.

Huang MZ, Yuan CH, Cheng SC, Cho YT, Shiea J. Ambient ionization mass spectrometry. Annl Rev. Anal Chem (Palo Alto, Calif). 2010; 3:43-65. https://doi.org/10.1146/ annurev.anchem.111808.073702. PMid:20636033.

Shelley JT, Badal SP, Engelhard C, Hayen H. Ambient desorption/ionization mass spectrometry: evolution from rapid qualitative screening to accurate quantification tool. Anal Bioanal Chem. 2018; 410(17):4061-4076. https://doi.org/10.1007/s00216-018-1023-9. PMid:29700557.