Micro-RNA Mediated Signalling Circuits in Endocrine-Dependent Malignancies of Human Reproductive System

Jump To References Section

Authors

  • Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasaragod - 671316, Kerala ,IN
  • Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasaragod - 671316, Kerala ,IN
  • Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasaragod - 671316, Kerala ,IN

DOI:

https://doi.org/10.18311/jer/2020/27220

Keywords:

Breast Cancer, Cervical Cancer, Endometrial Cancer, miRNA, Ovarian Cancer, Prostate Cancer

Abstract

Breast, ovarian, endometrial, prostate and cervical cancers are considered as the major endocrine-dependent malignancies associated with human reproductive system. Current tools used for diagnosis and therapeutics of these malignancies mainly exploit the hormone-sensitivity associated with them. Nonetheless, they often fail to give appreciable outcomes in terms of prognosis and survival rates. miRNAs have emerged as one of the key players dictating the pathophysiology of endocrine-dependent malignancies and present themselves as apt candidates to be developed as potential biomarkers or therapeutic targets for the early prognosis as well as treatment of these diseases. In this review, we have high-lighted the regulatory networks controlled by the promising candidate miRNAs in the pathophysiology of the major endocrinedependent reproductive system-associated malignancies.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2021-04-16

How to Cite

Aswini, P., Kunhi Krishnan, A., & Sameer Kumar, V. B. (2021). Micro-RNA Mediated Signalling Circuits in Endocrine-Dependent Malignancies of Human Reproductive System. Journal of Endocrinology and Reproduction, 24(1), 01–19. https://doi.org/10.18311/jer/2020/27220

Issue

Section

Review Article

 

References

O'Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 2018; 9:402. https://doi.org/10.3389/fendo.2018.00402. PMid:30123182 PMCid:PMC6085463.

Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005; 120(1):15-20. https://doi.org/10.1016/j.cell.2004.12.035. PMid:15652477.

Cook MS, Blelloch R. Small RNAs in germline development. Curr Top Dev Biol. 2013; 102:159-205. https://doi.org/10.1016/B978-0-12-416024-8.00006-4. PMid:23287033.

Hayashi K, Chuva de Sousa Lopes SM, Kaneda M, et al. MicroRNA biogenesis is required for mouse primordial germ cell development and spermatogenesis. PLoS One. 2008; 3(3):e1738. https://doi.org/10.1371/journal.pone.0001738. PMid:18320056 PMCid:PMC2254191.

Hong X, Luense LJ, McGinnis LK, Nothnick WB, Christenson LK. Dicer1 is essential for female fertility and normal development of the female reproductive system. Endocrinology. 2008; 149(12):6207-12. https:// doi.org/10.1210/en.2008-0294. PMid:18703631 PMCid:PMC2613048.

Liu W, Niu Z, Li Q, Pang RT, Chiu PC, Yeung WS. MicroRNA and embryo implantation. Am J Reprod Immunol. 2016; 75(3):263-271. https://doi.org/10.1111/ aji.12470. PMid:26707514.

Kozieł MJ, Kowalska K, Piastowska-Ciesielska AW. Claudins: New players in human fertility and reproductive system cancers. Cancers (Basel). 2020; 12(3):711. https://doi.org/10.3390/cancers12030711. PMid:32197343 PMCid:PMC7140004.

Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. [published correction appears in CA Cancer J Clin. 2020; 70(4):313]. CA Cancer J Clin. 2018; 68(6):394-424. https://doi.org/10.3322/caac.21492. PMid:30207593.

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019; 69(1):7-34. https://doi.org/10.3322/ caac.21551. PMid:30620402.

Hecht JL, Mutter GL. Molecular and pathologic aspects of endometrial carcinogenesis. J Clin Oncol. 2006; 24(29):4783-4791. https://doi.org/10.1200/JCO.2006.06.7173. PMid:17028294.

Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res. 2004; 14(10A):19021910. https://doi.org/10.1101/gr.2722704. PMid:15364901 PMCid:PMC524413.

Saini HK, Griffiths-Jones S, Enright AJ. Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci USA. 2007; 104(45):17719-17724. https://doi.org/10.1073/ pnas.0703890104. PMid:17965236 PMCid:PMC2077053.

Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006; 13(12):1097-1101. https://doi.org/10.1038/nsmb1167. PMid:17099701.

Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A. Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell. 2010; 39(3):373-384. https://doi.org/10.1016/j.molcel.2010.07.011. PMid:20705240 PMCid:PMC2921543.

Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ. Processing of primary microRNAs by the Microprocessor complex. Nature. 2004; 432(7014):231-235. https://doi.org/10.1038/nature03049. PMid:15531879.

Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 2004; 10(2):185191. https://doi.org/10.1261/rna.5167604. PMid:14730017 PMCid:PMC1370530.

Haase AD, Jaskiewicz L, Zhang H, et al. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep. 2005; 6(10):961-967. https://doi.org/10.1038/sj.embor.7400509. PMid:16142218 PMCid:PMC1369185.

Zhang H, Kolb FA, Brondani V, Billy E, Filipowicz W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 2002; 21(21):5875-85. https://doi.org/10.1093/emboj/cdf582. PMid:12411505 PMCid:PMC131079.

Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005; 6(5):376-385. https:// doi.org/10.1038/nrm1644. PMid:15852042.

Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014; 15(8):509-524. https://doi.org/10.1038/nrm3838. PMid:25027649.

Ellwanger DC, Büttner FA, Mewes HW, Stümpflen V. The sufficient minimal set of miRNA seed types. Bioinformatics. 2011; 27(10):1346-1350. https://doi.org/10.1093/bioinformatics/btr149. PMid:21441577 PMCid:PMC3087955.

Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011; 12(2):99-110. https://doi.org/10.1038/nrg2936. PMid:21245828.

Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol. 2005; 7(7):719-723. https://doi.org/10.1038/ncb1274. PMid:15937477 PMCid:PMC1855297.

Subramani R, Nandy SB, Pedroza DA, Lakshmanaswamy R. Role of Growth Hormone in Breast Cancer. Endocrinology. 2017; 158(6):1543-1555. https://doi.org/10.1210/en.20161928. PMid:28379395.

Chung SH. Targeting female hormone receptors as cervical cancer therapy. Trends Endocrinol Metab. 2015; 26(8):399-401. https://doi.org/10.1016/j.tem.2015.06.004. PMid:26163756 PMCid:PMC4526440.

Richter E., Srivastava S., Dobi A. Androgen receptor and prostate cancer. Prostate Cancer Prostatic Dis. 2007; 10:114-118. https://doi.org/10.1038/sj.pcan.4500936. PMid:17297502.

So WK, Cheng JC, Poon SL, Leung PC. Gonadotropinreleasing hormone and ovarian cancer: a functional and mechanistic overview. FEBS J. 2008; 275(22):54965511. https://doi.org/10.1111/j.1742-4658.2008.06679.x. PMid:18959739.

Wetendorf M, Li R, Wu SP, et al. Constitutive expression of progesterone receptor isoforms promotes the development of hormone-dependent ovarian neoplasms. Sci Signal. 2020; 13(652):eaaz9646. https://doi.org/10.1126/scisignal.aaz9646. PMid:33023986.

Murphy CG, Dickler MN. Endocrine resistance in hormoneresponsive breast cancer: mechanisms and therapeutic strategies. EndocrRelat Cancer. 2016; 23(8):R337-R352. https://doi.org/10.1530/ERC-16-0121. PMid:27406875.

Ye ZB, Ma G, Zhao YH, et al. miR-429 inhibits migration and invasion of breast cancer cells in vitro. Int J Oncol. 2015; 46(2):531-538. https://doi.org/10.3892/ijo.2014.2759. PMid:25405387 PMCid:PMC4277243.

Wei YT, Guo DW, Hou XZ, Jiang DQ. miRNA-223 suppresses FOXO1 and functions as a potential tumor marker in breast cancer. Cell Mol Biol (Noisy-le-grand). 2017; 20; 63(5):113-118. https://doi.org/10.14715/ cmb/2017.63.5.21. PMid:28719355.

Gravgaard KH, Lyng MB, Laenkholm AV, et al. The miRNA-200 family and miRNA-9 exhibit differential expression in primary versus corresponding metastatic tissue in breast cancer. Breast Cancer Res Treat. 2012; 134(1):207-217. https://doi.org/10.1007/s10549-012-19699. PMid:22294488.

Ma L, Young J, Prabhala H, et al. miR-9, a MYC/ MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 2010; 12(3):247256. https://doi.org/10.1038/ncb2024. PMid:20173740 PMCid:PMC2845545.

Liu DZ, Chang B, Li XD, Zhang QH, Zou YH. MicroRNA-9 promotes the proliferation, migration, and invasion of breast cancer cells via down-regulating FOXO1. Clin Transl Oncol. 2017; 19(9):1133-1140. https://doi.org/10.1007/ s12094-017-1650-1. PMid:28397066.

Li X, Zeng Z, Wang J, et al. MicroRNA-9 and breast cancer. Biomed Pharmacother. 2020; 122:109687. https://doi.org/10.1016/j.biopha.2019.109687. PMid:31918267.

Fong MY, Zhou W, Liu L, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 2015; 17(2):183194. https://doi.org/10.1038/ncb3094. PMid:25621950 PMCid:PMC4380143.

Zhao H, Kang X, Xia X, et al. miR-145 suppresses breast cancer cell migration by targeting FSCN-1 and inhibiting epithelial-mesenchymal transition. (Published 2016 Jul 15). Am J Transl Res. 2016; 8(7):3106-3114.

Li P, Sheng C, Huang L, et al. Tangcluster is up-regulated in most breast cancers and increases cell proliferation and migration (Published 2014 Nov 14). Breast Cancer Res. 2014; 16(6):473. https://doi.org/10.1186/s13058-014-0473-z. PMid:25394902 PMCid:PMC4303194.

Wu T, Song H, Xie D, et al. Mir-30b-5p promotes proliferation, migration, and invasion of breast cancer cells via targeting ASPP2. Biomed Res Int. 2020; 2020:7907269. https://doi.org/10.1155/2020/7907269. PMid:32420372 PMCid:PMC7210518.

Hannafon BN, Cai A, Calloway CL, et al. miR-23b and miR27b are oncogenic microRNAs in breast cancer: evidence from a CRISPR/Cas9 deletion study. BMC Cancer. 2019; 19(1):642. https://doi.org/10.1186/s12885-019-5839-2. PMid:31253120 PMCid:PMC6599331.

Liang L, Fu J, Wang S, et al. MiR-142-3p enhances chemosensitivity of breast cancer cells and inhibits autophagy by targeting HMGB1. Acta Pharm Sin B. 2020; 10(6):1036-1046. https://doi.org/10.1016/j.apsb.2019.11.009. PMid:32642410 PMCid:PMC7332808.

Qiu C, Huang F, Zhang Q, Chen W, Zhang H. miR-205-3p promotes proliferation and reduces apoptosis of breast cancer MCF-7 cells and is associated with poor prognosis of breast cancer patients. J Clin Lab Anal. 2019; 33(8):e22966. https://doi.org/10.1002/jcla.22966.

Nair MG, Prabhu JS, Korlimarla A, et al. miR-18a activates Wnt pathway in ER-positive breast cancer and is associated with poor prognosis. Cancer Med. 2020; 9(15):5587-5597. https://doi.org/10.1002/cam4.3183. PMid:32543775 PMCid:PMC7402845.

Pan Y, Jiao G, Wang C, Yang J, Yang W. MicroRNA-421 inhibits breast cancer metastasis by targeting metastasis associated 1. Biomed Pharmacother. 2016; 83:1398-1406. https://doi.org/10.1016/j.biopha.2016.08.058. PMid:27583980.

Sharma S, Nagpal N, Ghosh PC, Kulshreshtha R. P53-miR191-SOX4 regulatory loop affects apoptosis in breast cancer. RNA. 2017; 23(8):1237-1246. https://doi.org/10.1261/ rna.060657.117. PMid:28450532 PMCid:PMC5513068.

Zhang H, Peng J, Lai J, et al. MiR-940 promotes malignant progression of breast cancer by regulating FOXO3. Biosci Rep. 2020; 40(9):BSR20201337. https://doi.org/10.1042/ BSR20201337. PMid:32840296 PMCid:PMC7494982.

Wang H, Tan Z, Hu H, et al. microRNA-21 promotes breast cancer proliferation and metastasis by targeting LZTFL1. BMC Cancer. 2019; 19(1):738. https://doi.org/10.1186/ s12885-019-5951-3. PMid:31351450 PMCid:PMC6661096.

Yan LX, Wu QN, Zhang Y, et al. Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth. Breast Cancer Res. 2011; 13(1):R2. https://doi.org/10.1186/bcr2803. PMid:21219636 PMCid:PMC3109565.

Cai WL, Huang WD, Li B, et al. microRNA-124 inhibits bone metastasis of breast cancer by repressing Interleukin-11 [published correction appears in Mol Cancer. 2020 Jun 27; 19(1):111]. Mol Cancer. 2018; 17(1):9. https:// doi.org/10.1186/s12943-017-0746-0. PMid:29343249 PMCid:PMC5773190.

Han S, Zou H, Lee JW, et al. miR-1307-3p stimulates breast cancer development and progression by targeting SMYD4. J Cancer. 2019; 10(2):441-448. https://doi.org/10.7150/ jca.30041. PMid:30719138 PMCid:PMC6360296.

Chen YN, Ren CC, Yang L, et al. MicroRNA let-7d-5p rescues ovarian cancer cell apoptosis and restores chemosensitivity by regulating the p53 signalling pathway via HMGA1. Int J Oncol. 2019; 54(5):1771-1784. https:// doi.org/10.3892/ijo.2019.4731.

Iorio MV, Visone R, Di Leva G, et al. MicroRNA signatures in human ovarian cancer. Cancer Res. 2007; 67(18):86998707. https://doi.org/10.1158/0008-5472.CAN-07-1936. PMid:17875710.

Liu J, Gu Z, Tang Y, et al. Tumour-suppressive microRNA424-5p directly targets CCNE1 as potential prognostic markers in epithelial ovarian cancer. Cell Cycle. 2018; 17(3):309-318. https://doi.org/10.1080/15384101.2017.140 7894. PMid:29228869 PMCid:PMC5914728.

Xu S, Tao Z, Hai B, et al. miR-424(322) reverses chemoresistance via T-cell immune response activation by blocking the PD-L1 immune checkpoint. Nat Commun. 2016; 7:11406. Published 2016 May 5. https:// doi.org/10.1038/ncomms11406. PMid:27147225 PMCid:PMC4858750.

Bieg D, Sypniewski D, Nowak E, Bednarek I. MiR-424-3p suppresses galectin-3 expression and sensitizes ovarian cancer cells to cisplatin. Arch Gynecol Obstet. 2019; 299(4):1077-1087. https://doi.org/10.1007/s00404-0184999-7. PMid:30585294 PMCid:PMC6435611.

Wu H, Xiao Z, Wang K, Liu W, Hao Q. MiR-145 is downregulated in human ovarian cancer and modulates cell growth and invasion by targeting p70S6K1 and MUC1. Biochem Biophys Res Commun. 2013; 441(4):693700. https://doi.org/10.1016/j.bbrc.2013.10.053. PMid:24157791.

Gao N, Flynn DC, Zhang Z, et al. G1 cell cycle progression and the expression of G1 cyclins are regulated by PI3K/AKT/ mTOR/p70S6K1 signalling in human ovarian cancer cells. Am J Physiol Cell Physiol. 2004; 287(2):C281-C291. https:// doi.org/10.1152/ajpcell.00422.2003. PMid:15028555.

Ye Q, Yan Z, Liao X, et al. MUC1 induces metastasis in esophageal squamous cell carcinoma by upregulating matrix metalloproteinase 13. Lab Invest. 2011; 91(5):778-787. https://doi.org/10.1038/labinvest.2011.12. PMid:21339746.

Huang L, Ren J, Chen D, Li Y, Kharbanda S, Kufe D. MUC1 cytoplasmic domain coactivates Wnt target gene transcription and confers transformation. Cancer Biol Ther. 2003; 2(6):702-706. https://doi.org/10.4161/cbt.2.6.610.

Sheng Q, Zhang Y, Wang Z, et al. Cisplatin-mediated down-regulation of miR-145 contributes to up-regulation of PD-L1 via the c-Myc transcription factor in cisplatinresistant ovarian carcinoma cells. Clin Exp Immunol.2020; 200(1):45-52. https://doi.org/10.1111/cei.13406. PMid:31821542.

Hua M, Qin Y, Sheng M, et al. miR 145 suppresses ovarian cancer progression via modulation of cell growth and invasion by targeting CCND2 and E2F3. Mol Med Rep. 2019; 19(5):3575-3583. https://doi.org/10.3892/ mmr.2019.10004.

Zhou J, Zhang X, Li W, Chen Y. MicroRNA-145-5p regulates the proliferation of epithelial ovarian cancer cells via targeting SMAD4. J Ovarian Res. 2020; 13(1):54. https:// doi.org/10.1186/s13048-020-00656-1. PMid:32366274 PMCid:PMC7199349.

Dong R, Liu X, Zhang Q, et al. miR-145 inhibits tumor growth and metastasis by targeting metadherin in high-grade serous ovarian carcinoma. Oncotarget. 2014; 5(21):10816-10829. https://doi.org/10.18632/ oncotarget.2522. PMid:25333261 PMCid:PMC4279412.

Luo S, Wang J, Ma Y, Yao Z, Pan H. PPARγ inhibits ovarian cancer cells proliferation through upregulation of miR-125b. Biochem Biophys Res Commun. 2015; 462(2):85-90. https://doi.org/10.1016/j.bbrc.2015.04.023. PMid:25944662.

Bi YN, Guan JP, Wang L, Li P, Yang FX. Clinical significance of microRNA-125b and its contribution to ovarian carcinogenesis. Bioengineered. 2020; 11(1):939948. https://doi.org/10.1080/21655979.2020.1814660. PMid:32842846.

Ying X, Wei K, Lin Z, et al. MicroRNA-125b suppresses ovarian cancer progression via suppression of the epithelialmesenchymal tTransition pathway by targeting the SET protein. Cell Physiol Biochem. 2016; 39(2):501-10. https:// doi.org/10.1159/000445642. PMid:27383536.

Zhang D, Guo H, Feng W, Qiu H. LAMC2 regulated by microRNA-125a-5p accelerates the progression of ovarian cancer via activating p38 MAPK signalling. Life Sci. 2019; 232:116648. https://doi.org/10.1016/j.lfs.2019.116648. PMid:31301414.

Kong F, Sun C, Wang Z, et al. miR-125b confers resistance of ovarian cancer cells to cisplatin by targeting pro-apoptotic Bcl-2 antagonist killer 1. J Huazhong Univ Sci Technolog Med Sci. 2011; 31(4):543. https://doi.org/10.1007/s11596011-0487-z. PMid:21823019.

Peng DX, Luo M, Qiu LW, He YL, Wang XF. Prognostic implications of microRNA-100 and its functional roles in human epithelial ovarian cancer. Oncol Rep. 2012; 27(4):1238-1244. https://doi.org/10.3892/or.2012.1625. PMid:22246341 PMCid:PMC3583406.

Takaki T, Trenz K, Costanzo V, Petronczki M. Polo-like kinase 1 reaches beyond mitosis-cytokinesis, DNA damage response, and development. Curr Opin Cell Biol. 2008; 20:650-660. https://doi.org/10.1016/j.ceb.2008.10.005. PMid:19000759.

Guo P, Xiong X, Zhang S, Peng D. miR-100 resensitizes resistant epithelial ovarian cancer to cisplatin. Oncol Rep. 2016; 36(6):3552-3558. https://doi.org/10.3892/ or.2016.5140. PMid:27748936.

Nagaraja AK, Creighton CJ, Yu Z, et al. A link between mir100 and FRAP1/mTOR in clear cell ovarian cancer. Mol Endocrinol. 2010; 24(2):447-463. https://doi.org/10.1210/ me.2009-0295. PMid:20081105 PMCid:PMC2817607.

Tang L, Yang B, Cao X, Li Q, Jiang L, Wang D. MicroRNA377-3p inhibits growth and invasion through sponging JAG1 in ovarian cancer. Genes Genomics. 2019; 41(8):919926. https://doi.org/10.1007/s13258-019-00822-w. PMid:31041680.

Yu R, Cai L, Chi Y, Ding X, Wu X. miR-377 targets CUL4A and regulates metastatic capability in ovarian cancer. Int J Mol Med. 2018; 41(6):3147-3156. https://doi.org/10.3892/ijmm.2018.3540.

Zhang H, Wang Q, Zhao Q, Di W. MiR-124 inhibits the migration and invasion of ovarian cancer cells by targeting SphK1. J Ovarian Res. 2013; 6(1):84. https:// doi.org/10.1186/1757-2215-6-84. PMid:24279510 PMCid:PMC3879084.

Yuan L, Li S, Zhou Q, et al. MiR-124 inhibits invasion and induces apoptosis of ovarian cancer cells by targeting programmed cell death 6. Oncol Lett. 2017; 14(6):73117317. https://doi.org/10.3892/ol.2017.7157.

Yuan J, Li T, Yi K, Hou M. The suppressive role of miR362-3p in epithelial ovarian cancer. Heliyon. 2020; 6(7):e04258. https://doi.org/10.1016/j.heliyon.2020.e04258. PMid:32671239 PMCid:PMC7347651.

Tian J, Xu YY, Li L, Hao Q. MiR-490-3p sensitizes ovarian cancer cells to cisplatin by directly targeting ABCC2. Am J Transl Res. 2017; 9(3):1127-1138.

Chen SN, Chang R, Lin LT, et al. MicroRNA in ovarian cancer: Biology, pathogenesis, and therapeutic opportunities. Int J Environ Res Public Health. 2019; 16(9):1510. https://doi.org/10.3390/ijerph16091510. PMid:31035447 PMCid:PMC6539609.

Garcí­a-Vázquez R, Gallardo Rincón D, Ruiz-Garcí­a E, et al. let-7d-3p is associated with apoptosis and response to neoadjuvant chemotherapy in ovarian cancer. Oncol Rep. 2018; 39(6):3086-3094. https://doi.org/10.3892/ or.2018.6366. PMid:29658612.

Kleemann M, Schneider H, Unger K, et al. Induction of apoptosis in ovarian cancer cells by miR-493-3p directly targeting AKT2, STK38L, HMGA2, ETS1 and E2F5. Cell Mol Life Sci. 2019; 76(3):539-559. https://doi.org/10.1007/ s00018-018-2958-x. PMid:30392041.

Tambe M, Pruikkonen S, Mäki-Jouppila J, et al. Novel Mad2-targeting miR-493-3p controls mitotic fidelity and cancer cells' sensitivity to paclitaxel. Oncotarget. 2016; 7(11):12267-12285. https://doi.org/10.18632/oncotarget.7860. PMid:26943585 PMCid:PMC4914283.

Giannakakis A, Sandaltzopoulos R, Greshock J, et al. miR210 links hypoxia with cell cycle regulation and is deleted in human epithelial ovarian cancer. Cancer Biol Ther. 2008; 7(2):255-264. https://doi.org/10.4161/cbt.7.2.5297. PMid:18059191 PMCid:PMC3233968.

Jin Y, Wei J, Xu S, Guan F, Yin L, Zhu H. miR-210-3p regulates cell growth and affects cisplatin sensitivity in human ovarian cancer cells via targeting E2F3. Mol Med Rep. 2019; 19(6):4946-4954. https://doi.org/10.3892/ mmr.2019.10129.

Ding L, Zhao L, Chen W, Liu T, Li Z, Li X. miR-210, a modulator of hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cell. Int J Clin Exp Med. 2015; 8(2):2299-2307.

Li L, Huang K, You Y, et al. Hypoxia-induced miR-210 in epithelial ovarian cancer enhances cancer cell viability via promoting proliferation and inhibiting apoptosis. Int J Oncol. 2014; 44(6):2111-2120. https://doi.org/10.3892/ijo.2014.2368. PMid:24715221.

González-Rodriguez A, Escribano O, Alba J, Rondinone CM, Benito M, Valverde AM. Levels of protein tyrosine phosphatase 1B determine susceptibility to apoptosis in serum-deprived hepatocytes. J Cell Physiol. 2007; 212(1):7688. https://doi.org/10.1002/jcp.21004. PMid:17323378.

Liu Y, Niu Z, Lin X, Tian Y. MiR-216b increases cisplatin sensitivity in ovarian cancer cells by targeting PARP1. Cancer Gene Ther. 2017; 24(5):208-214. https://doi.org/10.1038/cgt.2017.6. PMid:28281524.

Samuel P, Pink RC, Caley DP, Currie JM, Brooks SA, Carter DR. Over-expression of miR-31 or loss of KCNMA1 leads to increased cisplatin resistance in ovarian cancer cells. Tumour Biol. 2016; 37(2):2565-2573. https://doi.org/10.1007/s13277-015-4081-z. PMid:26386726.

Mitamura T, Watari H, Wang L, et al. Downregulation of miRNA-31 induces taxane resistance in ovarian cancer cells through increase of receptor tyrosine kinase MET. Oncogenesis. 2013; 2(3):e40. https://doi.org/10.1038/ oncsis.2013.3. PMid:23552883 PMCid:PMC3641356.

Hassan MK, Watari H, Mitamura T, et al. P18/Stathmin1 is regulated by miR-31 in ovarian cancer in response to taxane. Oncoscience. 2015; 2(3):294-308. https://doi.org/10.18632/ oncoscience.143. PMid:25897432 PMCid:PMC4394135.

Sellin ME, Holmfeldt P, Stenmark S, Gullberg M. Op18/ Stathmin counteracts the activity of overexpressed tubulindisrupting proteins in a human leukemia cell line. Exp Cell Res. 2008; 314(6):1367-77. https://doi.org/10.1016/j.yexcr.2007.12.018. PMid:18262179

Wu, H., Liu, J., Zhang, Y. et al. miR-22 suppresses cell viability and EMT of ovarian cancer cells via NLRP3 and inhibits PI3K/AKT signalling pathway. Clin Transl Oncol. 2020. https://doi.org/10.1007/s12094-020-02413-8. PMid:32524269.

Li Y, Gu Y, Tang N, Liu Y, Zhao Z. miR-22-Notch signalling pathway is involved in the regulation of the apoptosis and autophagy in human ovarian cancer cells. Biol Pharm Bull.2018; 41(8):1237-1242. https://doi.org/10.1248/bpb.b1800084. PMid:30068873.

Chen S, Chen X, Xiu YL, Sun KX, Zhao Y. Inhibition of ovarian epithelial carcinoma tumorigenesis and progression by microRNA 106b mediated through the RhoC pathway. PLoS One. 2015; 10(5):e0125714. https://doi.org/10.1371/journal.pone.0125714. PMid:25933027 PMCid:PMC4416747.

Zhang L, Liu XL, Yuan Z, Cui J, Zhang H. MiR-99a suppressed cell proliferation and invasion by directly targeting HOXA1 through regulation of the AKT/mTOR signalling pathway and EMT in ovarian cancer. Eur Rev Med Pharmacol Sci. 2019; 23(11):4663-4672.

Laios A, O'Toole S, Flavin R, et al. Potential role of miR-9 and miR-223 in recurrent ovarian cancer (Published 2008 Apr 28). Mol Cancer. 2008; 7:35. https://doi.org/10.1186/14764598-7-35. PMid:18442408 PMCid:PMC2383925.

Sui X, Jiao YN, Yang LH, Liu J. MiR-9 accelerates epithelialmesenchymal transition of ovarian cancer cells via inhibiting e-cadherin. Eur Rev Med Pharmacol Sci. 2019; 23(3 Suppl):209-216.

Sun C, Li N, Yang Z, et al. miR-9 regulation of BRCA1 and ovarian cancer sensitivity to cisplatin and PARP inhibition. J Natl Cancer Inst. 2013; 105(22):1750-1758. https://doi.org/10.1093/jnci/djt302. PMid:24168967.

Tang H, Yao L, Tao X, et al. miR-9 functions as a tumor suppressor in ovarian serous carcinoma by targeting TLN1. Int J Mol Med. 2013; 32(2):381-388. https://doi.org/10.3892/ijmm.2013.1400. PMid:23722670.

Zhang L, Zhou Q, Qiu Q, et al. CircPLEKHM3 acts as a tumor suppressor through regulation of the miR-9/BRCA1/ DNAJB6/KLF4/AKT1 axis in ovarian cancer. Mol Cancer. 2019; 18(1):144. https://doi.org/10.1186/s12943-019-10805. PMid:31623606 PMCid:PMC6796346.

Li X, Chen W, Zeng W, Wan C, Duan S, Jiang S. microRNA-137 promotes apoptosis in ovarian cancer cells via the regulation of XIAP. Br J Cancer. 2017; 116(1):6676. https://doi.org/10.1038/bjc.2016.379. PMid:27875524 PMCid:PMC5220146.

Eckelman BP, Salvesen GS, Scott FL. Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep. 2006; 7(10):988-994. https://doi.org/10.1038/ sj.embor.7400795. PMid:17016456 PMCid:PMC1618369.

Sun J, Cai X, Yung MM, et al. miR-137 mediates the functional link between c-Myc and EZH2 that regulates cisplatin resistance in ovarian cancer. Oncogene. 2019; 38(4):564-580. https://doi.org/10.1038/s41388-0180459-x. PMid:30166592 PMCid:PMC7474467.

Dong P, Xiong Y, Watari H, et al. MiR-137 and miR-34a directly target Snail and inhibit EMT, invasion and sphereforming ability of ovarian cancer cells. J Exp Clin Cancer Res. 2016; 35(1):132. https://doi.org/10.1186/s13046-0160415-y. PMid:27596137 PMCid:PMC5011787.

Guo J, Xia B, Meng F, Lou G. miR-137 suppresses cell growth in ovarian cancer by targeting AEG-1. Biochem Biophys Res Commun. 2013; 441(2):357-363. https://doi.org/10.1016/j.bbrc.2013.10.052. PMid:24144591.

Emdad L, Sarkar D, Su ZZ, et al. Astrocyte elevated gene-1: recent insights into a novel gene involved in tumor progression, metastasis and neurodegeneration [published correction appears in Pharmacol Ther. 2007 Jul; 115(1):176]. PharmacolTher. 2007; 114(2):155-170. https://doi.org/10.1016/j.pharmthera.2007.05.001.

Hu G, Wei Y, Kang Y. The multifaceted role of MTDH/ AEG-1 in cancer progression. Clin Cancer Res. 2009; 15(18):5615-5620. https://doi.org/10.1158/1078-0432.CCR-09-0049. PMid:19723648 PMCid:PMC2747034.

He XX, Chang Y, Meng FY, et al. MicroRNA-375 targets AEG-1 in hepatocellular carcinoma and suppresses liver cancer cell growth in vitro and in vivo. Oncogene. 2012; 31(28):3357-3369. https://doi.org/10.1038/onc.2011.500. PMid:22056881.

Chen W, Du J, Li X, Zhi Z, Jiang S. microRNA-137 downregulates MCL1 in ovarian cancer cells and mediates cisplatin-induced apoptosis. Pharmacogenomics. 2020; 21(3):195-207. https://doi.org/10.2217/pgs-2019-0122. PMid:31967512.

Van Sinderen M, Griffiths M, Menkhorst E, et al. Restoration of microRNA-29c in type I endometrioid cancer reduced endometrial cancer cell growth. Oncol Lett. 2019; 18(3):2684-2693. https://doi.org/10.3892/ol.2019.10588. PMid:31404303 PMCid:PMC6676720.

Felix AS, Weissfeld JL, Stone RA, et al. Factors associated with Type I and Type II endometrial cancer. Cancer Causes Control. 2010; 21(11):1851-1856. https://doi.org/10.1007/s10552-010-9612-8. PMid:20628804 PMCid:PMC2962676.

Zhu L, Wang X, Wang T, Zhu W, Zhou X. miR 494 3p promotes the progression of endometrial cancer by regulating the PTEN/PI3K/AKT pathway. Mol Med Rep. 2019 Jan; 19(1):581-588. https://doi.org/10.3892/ mmr.2018.9649.

Yang C, Ota-Kurogi N, Ikeda K, et al. MicroRNA-191 regulates endometrial cancer cell growth via TET1mediated epigenetic modulation of APC. J Biochem. 2020; 168(1):7-14. https://doi.org/10.1093/jb/mvaa014. PMid:32003827.

Chen S, Sun KX, Liu BL, Zong ZH, Zhao Y. MicroRNA-505 functions as a tumor suppressor in endometrial cancer by targeting TGF-α. Mol Cancer. 2016; 15:11. https:// doi.org/10.1186/s12943-016-0496-4. PMid:26832151 PMCid:PMC4736705.

Zhang W, Chen JH, Shan T, et al. miR-137 is a tumor suppressor in endometrial cancer and is repressed by DNA hypermethylation. Lab Invest. 2018; 98(11):13971407. https://doi.org/10.1038/s41374-018-0092-x. PMid:29955087 PMCid:PMC6214735.

Myatt SS, Wang J, Monteiro LJ, et al. Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res. 2010; 70(1):367-377. https://doi.org/10.1158/0008-5472.CAN09-1891. PMid:20028871 PMCid:PMC2880714.

Wang Q, Zhu W. MicroRNA-873 inhibits the proliferation and invasion of endometrial cancer cells by directly targeting hepatoma-derived growth factor. Exp Ther Med. 2019; 18(2):1291-1298. https://doi.org/10.3892/ etm.2019.7713.

Karaayvaz M, Zhang C, Liang S, et al. Prognostic significance of miR-205 in endometrial cancer. PLoS One. 2012; 7(4):e35158. https://doi.org/10.1371/journal.pone.0035158. PMid:22514717 PMCid:PMC3325973.

Li XC, Hai JJ, Tan YJ, et al. MiR-218 suppresses metastasis and invasion of endometrial cancer via negatively regulating ADD2. Eur Rev Med Pharmacol Sci. 2019; 23(4):1408-1417.

Li HL, Sun JJ, Ma H, et al. MicroRNA-23a inhibits endometrial cancer cell development by targeting SIX1. Oncol Lett. 2019; 18(4):3792-3802. https://doi.org/10.3892/ ol.2019.10694.

Wang Z, Wang W, Huang K, et al.. MicroRNA34a inhibits cells proliferation and invasion by down-regulating Notch1 in endometrial cancer. Oncotarget. 2017; 8(67):111258-111270. Published 2017 Nov 30. https://doi.org/10.18632/oncotarget.22770 PMid:29340051 PMCid:PMC5762319.

Yanokura M, Banno K, Aoki D. MicroRNA-34b expression enhances chemosensitivity of endometrial cancer cells to paclitaxel. Int J Oncol. 2020; 57(5):1145-1156. Published 2020 Sep 23. https://doi.org/10.3892/ijo.2020.5127. PMid:33300049 PMCid:PMC7549539.

Wang J, Zhang L, Jiang W, et al. MicroRNA-135a promotes proliferation, migration, invasion and induces chemoresistance of endometrial cancer cells. Eur J Obstet Gynecol Reprod Biol X. 2019; 5:100103. https:// doi.org/10.1016/j.eurox.2019.100103. PMid:32021975 PMCid:PMC6994408.

Hood SP, Cosma G, Foulds GA, et al. Identifying prostate cancer and its clinical risk in asymptomatic men using machine learning of high dimensional peripheral blood flow cytometric natural killer cell subset phenotyping data. Elife. 2020; 9:e50936. Published 2020 Jul 28. https://doi.org/10.7554/eLife.50936. PMid:32717179 PMCid:PMC7386909.

Mazhar D, Waxman J. Prostate cancer. Postgrad Med J. 2002; 78(924):590-595. https://doi.org/10.1136/pmj.78.924.590. PMid:12415080 PMCid:PMC1742511.

Catalona WJ, Smith DS, Ratliff TL, et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer [published correction appears in N Engl J Med 1991 Oct 31; 325(18):1324]. N Engl J Med. 1991; 324(17):1156-1161. https://doi.org/10.1056/ NEJM199104253241702. PMid:1707140.

Hankey BF, Feuer EJ, Clegg LX, et al. Cancer surveillance series: interpreting trends in prostate cancer--part I: Evidence of the effects of screening in recent prostate cancer incidence, mortality, and survival rates. J Natl Cancer Inst. 1999; 91(12):1017-1024. https://doi.org/10.1093/ jnci/91.12.1017. PMid:10379964.

Thompson IM, Pauler DK, Goodman PJ, et al. Prevalence of prostate cancer among men with a prostate-specific antigen level < or =4.0 ng per milliliter [published correction appears in N Engl J Med. 2004 Sep 30; 351(14):1470]. N Engl J Med. 2004; 350(22):2239-2246. https://doi.org/10.1056/NEJMoa031918. PMid:15163773.

Huggins C, Hodges CV. Studies on prostatic cancer: I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941. J Urol. 2002; 168(1):9-12. https://doi.org/10.1016/S0022-5347(05)64820-3.

Perlmutter MA, Lepor H. Androgen deprivation therapy in the treatment of advanced prostate cancer. Rev Urol. 2007; 9 Suppl 1(Suppl 1):S3-S8.

Fletcher CE, Sulpice E, Combe S, et al. Androgen receptormodulatory microRNAs provide insight into therapy resistance and therapeutic targets in advanced prostate cancer. Oncogene. 2019; 38(28):5700-5724. https:// doi.org/10.1038/s41388-019-0823-5. PMid:31043708 PMCid:PMC6755970.

Urabe F, Kosaka N, Sawa Y, et al. miR-26a regulates extracellular vesicle secretion from prostate cancer cells via targeting SHC4, PFDN4, and CHORDC1. Sci Adv. 2020; 6(18):eaay3051. https://doi.org/10.1126/sciadv.aay3051. PMid:32494663 PMCid:PMC7190312.

Brase JC, Johannes M, Schlomm T, et al. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer. 2011; 128(3):608-616. https://doi.org/10.1002/ijc.25376. PMid:20473869.

Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 2008; 105(30):1051310518. https://doi.org/10.1073/pnas.0804549105. PMid:18663219 PMCid:PMC2492472.

Richardsen E, Andersen S, Melbí¸-Jí¸rgensen C, et al. MicroRNA 141 is associated to outcome and aggressive tumor characteristics in prostate cancer. Sci Rep. 2019; 9(1):386. https://doi.org/10.1038/s41598-018-36854-7. PMid:30674952 PMCid:PMC6344505.

Gao W, Hong Z, Huang H, et al. miR-27a in serum acts as biomarker for prostate cancer detection and promotes cell proliferation by targeting Sprouty2. Oncol Lett. 2018; 16(4):5291-5298. https://doi.org/10.3892/ol.2018.9274.

Meng Y, Hu X, Li S, et al. miR-203 inhibits cell proliferation and ERK pathway in prostate cancer by targeting IRS-1. BMC Cancer. 2020; 20(1):1028. https://doi.org/10.1186/s12885020-07472-2. PMid:33109107 PMCid:PMC7590475.

Saini S, Majid S, Yamamura S, et al. Regulatory role of mir-203 in prostate cancer progression and metastasis. Clin Cancer Res. 2011; 17(16):5287-98. https://doi.org/10.1158/1078-0432.CCR-10-2619. PMid:21159887.

Viticchiè G, Lena AM, Latina A, et al. MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines. Cell Cycle. 2011; 10(7):1121-1131. https:// doi.org/10.4161/cc.10.7.15180. PMid:21368580.

Waseem M, Ahmad MK, Srivatava VK, et al. Evaluation of miR-711 as novel biomarker in prostate cancer progression. Asian Pac J Cancer Prev. 2017; 18(8):2185-2191.

Kiener M, Chen L, Krebs M, et al. miR-221-5p regulates proliferation and migration in human prostate cancer cells and reduces tumor growth in vivo. BMC Cancer. 2019; 19(1):627. Published 2019 Jun 25. https://doi.org/10.1186/ s12885-019-5819-6. PMid:31238903 PMCid:PMC6593572.

Verma S, Pandey M, Shukla GC, et al. Integrated analysis of miRNA landscape and cellular networking pathways in stage-specific prostate cancer. PLoS One. 2019; 14(11):e0224071. https://doi.org/10.1371/journal.pone.0224071. PMid:31756185 PMCid:PMC6874298.

Arbyn M, Weiderpass E, Bruni L, et al. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Health. 2020; 8(2):e191-e203. https:// doi.org/10.1016/S2214-109X(19)30482-6.

Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer. 2019; 144(8):1941-1953. https://doi.org/10.1002/ijc.31937. PMid:30350310.

Å arenac T, Mikov M. Cervical Cancer, Different Treatments and Importance of Bile Acids as Therapeutic Agents in This Disease [Published 2019 Jun 4]. Front Pharmacol. 2019; 10:484. https://doi.org/10.3389/fphar.2019.00484. PMid:31214018 PMCid:PMC6558109.

Roura E, Travier N, Waterboer T, et al. The Influence of Hormonal Factors on the Risk of Developing Cervical Cancer and Pre-Cancer: Results from the EPIC Cohort [published correction appears in PLoS One. Jan 25 2016; 11(3):e0151427]. PLoS One. 2016; 11(1):e0147029. https://doi.org/10.1371/journal.pone.0147029. PMid:26808155 PMCid:PMC4726518.

Xu J, Zhang W, Lv Q, Zhu D. Overexpression of miR21 promotes the proliferation and migration of cervical cancer cells via the inhibition of PTEN. Oncol Rep. 2015; 33(6):3108-3116. https://doi.org/10.3892/or.2015.3931. PMid:25963606.

Nanthamongkolkul K, Hanprasertpong J. Predictive Factors of Pelvic Lymph Node Metastasis in Early-Stage Cervical Cancer. Oncol Res Treat. 2018; 41(4):194-198. https://doi.org/10.1159/000485840. PMid:29562222.

Guo H, Dai Y, Wang A, et al. Association between expression of MMP-7 and MMP-9 and pelvic lymph node and paraaortic lymph node metastasis in early cervical cancer. J Obstet Gynaecol Res. 2018; 44(7):1274-1283. https://doi.org/10.1111/jog.13659. PMid:29767419.

Wright JD, Huang Y, Ananth CV, et al. Influence of treatment center and hospital volume on survival for locally advanced cervical cancer. Gynecol Oncol. 2015; 139(3):506512. https://doi.org/10.1016/j.ygyno.2015.07.015. PMid:26177552 PMCid:PMC4679418.

Liu Z, Hu K, Liu A, et al. Patterns of lymph node metastasis in locally advanced cervical cancer. Medicine (Baltimore). 2016; 95(39):e4814. https://doi.org/10.1097/MD.0000000000004814. PMid:27684810 PMCid:PMC5265903.

Shen G, Zhou H, Jia Z, Deng H. Diagnostic performance of diffusion-weighted MRI for detection of pelvic metastatic lymph nodes in patients with cervical cancer: A systematic review and meta-analysis. Br J Radiol. 2015; 88(1052):20150063. https://doi.org/10.1259/bjr.20150063. PMCid:PMC4651381.

Liu J, Li Y, Chen X, et al. Upregulation of miR-205 induces CHN1 expression, which is associated with the aggressive behaviour of cervical cancer cells and correlated with lymph node metastasis. BMC Cancer. 2020; 20(1):1029. https://doi.org/10.1186/s12885-020-07478-w. PMid:33109127 PMCid:PMC7590479.

Majid S, Dar AA, Saini S, et al. MicroRNA-205-directed transcriptional activation of tumor suppressor genes in prostate cancer. Cancer. 2010; 116(24):5637-5649. https://doi.org/10.1002/cncr.25488. PMid:20737563 PMCid:PMC3940365.

Kim JS, Yu SK, Lee MH, et al. MicroRNA-205 directly regulates the tumor suppressor, interleukin-24, in human KB oral cancer cells. Mol Cells. 2013; 35(1):17-24. https:// doi.org/10.1007/s10059-013-2154-7. PMid:23212344 PMCid:PMC3887855.

Sanz-Moreno V, Gadea G, Ahn J, et al. Rac activation and inactivation control plasticity of tumor cell movement. Cell. 2008; 135(3):510-523. https://doi.org/10.1016/j.cell.2008.09.043. PMid:18984162.

Kozma R, Ahmed S, Best A, Lim L. The GTPase-activating protein n-chimaerin cooperates with Rac1 and Cdc42Hs to induce the formation of lamellipodia and filopodia. Mol Cell Biol. 1996; 16(9):5069-5080. https://doi.org/10.1128/MCB.16.9.5069. PMid:8756665 PMCid:PMC231508.

Xie H, Zhao Y, Caramuta S, Larsson C, Lui WO. miR-205 expression promotes cell proliferation and migration of human cervical cancer cells. PLoS One. 2012; 7(10):e46990. https://doi.org/10.1371/journal.pone.0046990. PMid:23056551 PMCid:PMC3463520.

Dhar A, Ray A. The CCN family proteins in carcinogenesis. Exp Oncol. 2010 Mar; 32(1):2-9. PMID: 20332765.

Wei YQ, Jiao XL, Zhang SY, et al. MiR-9-5p could promote angiogenesis and radiosensitivity in cervical cancer by targeting SOCS5. Eur Rev Med Pharmacol Sci. 2019; 23(17):7314-7326.

Edatt L, Haritha K, Sruthi TV, Aswini P, Kumar Sameer VB. 2- Deoxy glucose regulate MMP-9 in a SIRT-1 dependent and NFkB independent mechanism. Mol Cell Biochem. 2016; 423: 197-206. https://doi.org/10.1007/s11010-0162837-4. PMid:27704463.

Raji GR, Sruthi TV, Edatt L, et al. Horizontal transfer of miR-106a/b from cisplatin resistant hepatocarcinoma cells can alter the sensitivity of cervical cancer cells to cisplatin [Published in Epub. 2017 Jul 11]. Cell Signal. 2017 Oct; 38:146-158. PMID: 28709644. https://doi.org/10.1016/j.cellsig.2017.07.005. PMid:28709644.

Xu F, Li Y, Fan L, et al. Preoperative SCC-Ag and thrombocytosis as predictive markers for pelvic lymphatic metastasis of squamous cervical cancer in early FIGO stage. J Cancer. 2018; 9(9):1660-1666. https://doi.org/10.7150/ jca.24049. PMid:29760805 PMCid:PMC5950596.

Zhang L, Zhan X, Yan D, Wang Z. Circulating MicroRNA-21 Is Involved in Lymph Node Metastasis in Cervical Cancer by Targeting RASA1. Int J Gynecol Cancer. 2016; 26(5):810816. https://doi.org/10.1097/IGC.0000000000000694. PMid:27101583.

Wang JY, Chen LJ. The role of miRNAs in the invasion and metastasis of cervical cancer. Biosci Rep. 2019; 39(3):BSR20181377. https://doi.org/10.1042/ BSR20181377. PMid:30833362 PMCid:PMC6418402.

Zhang Z, Wang J, Wang X, et al. MicroRNA-21 promotes proliferation, migration, and invasion of cervical cancer through targeting TIMP3. Arch Gynecol Obstet. 2018; 297(2):433-442. https://doi.org/10.1007/s00404-0174598-z. PMid:29177591.

Tang Y, Zhao Y, Ran J, Wang Y. MicroRNA-21 promotes cell metastasis in cervical cancer through modulating epithelial-mesenchymal transition. Oncol Lett. 2020; 19(4):3289-3295. https://doi.org/10.3892/ol.2020.11438.

Trahey M, Wong G, Halenbeck R, et al. Molecular cloning of two types of GAP complementary DNA from human placenta. Science. 1988; 242(4886):1697-1700. https://doi.org/10.1126/science.3201259. PMid:3201259

Wei WF, Zhou CF, Wu XG, et al. MicroRNA-221-3p, a TWIST2 target, promotes cervical cancer metastasis by directly targeting THBS2. Cell Death Dis [Published 2017 Dec 14.]. 2017; 8(12):3220. https://doi.org/10.1038/s41419017-0077-5. PMid:29242498 PMCid:PMC5870596.

Tan Y, Wang H, Zhang C. MicroRNA-381 targets G protein-Coupled receptor 34 (GPR34) to regulate the growth, migration and invasion of human cervical cancer cells [published online ahead of print, 2020 Oct 18]. Environ Toxicol Pharmacol. 2020; 81:103514. https://doi.org/10.1016/j.etap.2020.103514 . PMid:33086148.

Chen Y, Zhang W, Yan L, Zheng P, Li J. miR-29a-3p directly targets Smad nuclear interacting protein 1 and inhibits the migration and proliferation of cervical cancer HeLa cells. Peer J. 2020; 8:e10148. https://doi.org/10.7717/peerj.10148. PMid:33150075 PMCid:PMC7583608.

Wang S, Gao B, Yang H, et al. MicroRNA-432 is downregulated in cervical cancer and directly targets FN1 to inhibit cell proliferation and invasion. Oncol Lett. 2019; 18(2):1475-1482. https://doi.org/10.3892/ol.2019.10403.

Chen Y, Ma C, Zhang W, Chen Z, Ma L. Down-regulation of miR-143 is related with tumor size, lymph node metastasis and HPV16 infection in cervical squamous cancer. Diagn Pathol. 2014; 9:88. https://doi.org/10.1186/1746-1596-988. PMid:24774218 PMCid:PMC4039059.

Nambaru L, Meenakumari B, Swaminathan R, Rajkumar T. Prognostic significance of HPV physical status and integration sites in cervical cancer. Asian Pac J Cancer Prev. 2009; 10(3):355-360.

Poyyakkara A, Raji GR, Kunhiraman H, et al. ER stress mediated regulation of miR23a confer HeLa cells better adaptability to utilize glycolytic pathway. J Cell Biochem. 2018; 4907-4917. https://doi.org/10.1002/jcb.26718 PMid:29377281.

Chen S, Gao C, Wu Y, Huang Z. Identification of prognostic miRNA signature and lymph node metastasis-related key genes in cervical cancer. Front Pharmacol. 2020; 11:544. https://doi.org/10.3389/fphar.2020.00544. PMid:32457603 PMCid:PMC7226536.

Azizmohammadi S, Safari A, Azizmohammadi S, et al. Molecular identification of miR-145 and miR-9 expression level as prognostic biomarkers for early-stage cervical cancer detection. QJM. 2017; 110(1):11-15. https://doi.org/10.1093/qjmed/hcw101. PMid:27345415.

Li M, Li BY, Xia H, Jiang LL. Expression of microRNA142-3p in cervical cancer and its correlation with prognosis. Eur Rev Med Pharmacol Sci. 2017; 21(10):2346-2350.

Yadav, S. S., Prasad, S. B., Prasad, C. B., Pandeyet al. CXCL12 is a key regulator in tumor microenvironment of cervical cancer: an in vitro study. Clin Exp Metastasis. 2016; 33 (5), 431-439. https://doi.org/10.1007/s10585-0169787-9. PMid:26970955.

Serrano, M. L., Romero, A., Cendales, R., et al. Serum levels of insulin-like growth factor-I and -II and insulin-like growth factor binding protein 3 in women with squamous intraepithelial lesions and cervical cancer. Rev. Del Instituto Nacional Salud. 2006; 26 (2), 258-268.

Kümmel S, Eggemann H, Lüftner D, et al. Significant changes in circulating plasma levels of IGF1 and IGFBP3 after conventional or dose-intensified adjuvant treatment of breast cancer patients with one to three positive lymph nodes. Int J Biol Markers. 2007; 22(3):186-193. https://doi.org/10.5301/JBM.2008.1561, https://doi.org/10.1177/172460080702200304. PMid:17922461.

Huang, Z., Zhu, D.,Wu, L., et al. Six Serum-Based miRNAs as Potential Diagnostic Biomarkers for Gastric Cancer.

[Published in Cancer Epidemiol]. Biomarkers Prev. 2017; 26 (2):188-196. https://doi.org/10.1158/1055-9965.EPI-160607. PMid:27756776.

Zhou, Y., Zhang, Q., Gao, G., et al. Role of WDHD1 in human papillomavirus-mediated oncogenesis identified by transcriptional profiling of E7-expressing cells. J Virol. 2016; 90 (13), 6071- 6084. https://doi.org/10.1128/ JVI.00513-16. PMid:27099318 PMCid:PMC4907231.

Liu, B., Hu, Y., Qin, L., et al. MicroRNA-494dependent WDHDI inhibition suppresses epithelial-mesenchymal transition, tumor growth and metastasis in cholangiocarcinoma. Digestive Liver Dis. 2019; 51(3), 397-411. https://doi.org/10.1016/j.dld.2018.08.021. PMid:30314946.

Cheng, Y., Yang, B., Xi, Y., and Chen, X. RAD51B as a potential biomarker for early detection and poor prognostic evaluation contributes to tumorigenesis of gastric cancer. J Int Soc. Oncodevelopmental Biol Med. 2016; 37(11):14969-14978. https://doi.org/10.1007/s13277016-5340-3. PMid:27651161.

Hang, D., Zhou, W., Jia, M., et al. Genetic variants within microRNA-binding site of RAD51B are associated with risk of cervical cancer in Chinese women. Cancer Med. 2016; 5(9):2596-2601. https://doi.org/10.1002/cam4.797. PMid:27334422 PMCid:PMC5055154.

Yang, L., Shi, T., Liu, F., et al. REV3L, a promising target in regulating the chemosensitivity of cervical cancer cells. PloS One. 2015; 10(3):e0120334. https://doi.org/10.1371/journal.pone.0120334. PMid:25781640 PMCid:PMC4364373.

Zhu, X., Zou, S., Zhou, J., et al. REV3L, the catalytic subunit of DNA polymerase z, is involved in the progression and chemoresistance of esophageal squamous cell carcinoma. Oncol Rep. 2016; 35(3):1664-1670. https://doi.org/10.3892/or.2016.4549 PMid:26752104.