Cytokine Profiling in Primary Cicatricial Alopecia: Androgenic Alopecia and Leptin Connections

Jump To References Section

Authors

  • Department of Zoology, Advanced Centre for Regenerative Medicine and Stem Cell Research in Cutaneous Biology (AcREM-Stem), University of Kerala, Kariavattom, Thiruvananthapuram − 695581, Kerala ,IN
  • Department of Zoology, Advanced Centre for Regenerative Medicine and Stem Cell Research in Cutaneous Biology (AcREM-Stem), University of Kerala, Kariavattom, Thiruvananthapuram − 695581, Kerala ,IN
  • Department of Zoology, Advanced Centre for Regenerative Medicine and Stem Cell Research in Cutaneous Biology (AcREM-Stem), University of Kerala, Kariavattom, Thiruvananthapuram − 695581, Kerala ,IN
  • Department of Zoology, Advanced Centre for Regenerative Medicine and Stem Cell Research in Cutaneous Biology (AcREM-Stem), University of Kerala, Kariavattom, Thiruvananthapuram − 695581, Kerala ,IN

DOI:

https://doi.org/10.18311/jer/2020/26475

Keywords:

Central Centrifugal Cicatricial Alopecia (CCCA), Cytokine, Folliculitis Decalvans (FD), Frontal Fibrosing Alopecia (FFA), Lichen Plano-Pilaris (LPP), Primary Cicatricial Alopecia (PCA)

Abstract

Primary Cicatricial Alopecias (PCA) are a group of autoimmune inflammatory disorder which cause permanent destruction of hair follicles, mainly affected by the inflammatory cells such as lymphocytes, neutrophils, or combination of these. The management of PCA has become one of the most challenging clinical issues among dermatologists. The specific treatment of any form of the PCAs is currently unknown. We aim to identify the cytokine biomarkers in each type of PCA and study cytokine signatures' (role) in alopecia's pathogenesis and therapeutic aspects. Total protein from affected individuals scalp biopsy was extracted using the total protein extraction kit. For the cytokine detection, we used RayBio® C- Series Human Cytokine Antibody Array C5 with the help of a chemiluminescence detector. A total of 42 cytokines were analyzed and found significant differences in the diseased states' ratio compared to normal and unaffected samples. The inflammatory cells and associated cytokines are essential to develop a thorough understanding of alopecia's autoimmune nature. The cytokines can be incorporated with current therapeutics for the better management of alopecia.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2020-12-30

How to Cite

Suresh, S., Leemon, N., Najeeb, S., & Parameswara Panicker, S. (2020). Cytokine Profiling in Primary Cicatricial Alopecia: Androgenic Alopecia and Leptin Connections. Journal of Endocrinology and Reproduction, 24(2), 87–96. https://doi.org/10.18311/jer/2020/26475

Issue

Section

Original Research

 

References

Stenn KS, Sundberg JP, Sperling LC. Hair follicle biology, the sebaceous gland, and scarring alopecias. Archives of Dermatology. 1999; 135(8):973-974. https://doi. org/10.1001/archderm.135.8.973. PMid:10456347.

Gad HH, Dellgren C, Hamming OJ, Vends S, Paludan SR, Hartmann R. Interferon-λ is functionally interferon but structurally related to the interleukin-10 family. Journal of Biological Chemistry. 2009; 284(31):20869-20875. https://doi.org/10.1074/jbc.M109.002923. PMid:19457860 PMCid:PMC2742852.

Gibbert K, Schlaak JF, Yang D, Dittmer U. IFNiα subtypes: distinct biological activities in anti-viral therapy. British Journal of Pharmacology. 2013; 168(5):1048-1058. https://doi.org/10.1111/bph.12010. PMid:23072338 PMCid:PMC3594665.

Paul WE, Seder RA. Lymphocyte responses and cytokines. Cell. 1994; 76(2):241-251. https://doi.org/10.1016/0092- 8674(94)90332-8.

Kishimoto T, Taga T, Akira S. Cytokine signal transduction. Cell. 1994; 76(2):253-262. https://doi.org/10.1016/0092- 8674(94)90333-6.

Bachmann MF, Oxenius A. Interleukin 2: From immunostimulation to immunoregulation and back again. EMBO Reports. 2007; 8(12):1142-1148. https:// doi.org/10.1038/sj.embor.7401099. PMid:18059313 PMCid:PMC2267244.

Ghiasi H, Cai S, Slanina SM, Perng GC, Nesburn AB, Wechsler SL. The role of interleukin (IL)-2 and IL-4 in herpes simplex virus type 1 ocular replication and eye disease. The Journal of Infectious Diseases. 1999; 179(5):1086-1093. https://doi.org/10.1086/314736. PMid:10191208.

El-Behi M, Ciric B, Dai H, Yan Y, Cullimore M, Safavi F, Zhang GX, Dittel BN, Rostami A. The encephalitogenicity of T H 17 cells is dependent on IL-1-and IL-23-induced production of the cytokine GM-CSF. Nature Immunology. 2011; 12(6):568. https://doi.org/10.1038/ni.2031. PMid:21516111 PMCid:PMC3116521.

Codarri L, Gyülvészi G, Tosevski V, Hesske L, Fontana A, Magnenat L, Suter T, Becher B. RORγt drives production of the cytokine GM-CSF in helper T cells, which is essential for the effector phase of autoimmune neuroinflammation. Nature Immunology. 2011; 12(6):560. https://doi. org/10.1038/ni.2027. PMid:21516112.

Little JC, Westgate GE, Evans A, Granger SP. Cytokine gene expression in intact anagen rat hair follicles. Journal of Investigative Dermatology. 1994; 103(5):715-720. https:// doi.org/10.1111/1523-1747.ep12398584. PMid:7525735.

Hoffmann R, Happle R. Does interleukin-1 induce hair loss? Dermatology. 1995; 191(4):273-275. https://doi. org/10.1159/000246567. PMid:8573920.

Groves RW, Williams IR, Sarkar S, Nakamura K, Kupper TS. Analysis of epidermal IL-1 family members in-vivo using transgenic mouse models. Journal of Investigative Dermatology. 1994; 102(4):556-556.

Teraki Y, Imanishi K, Shiohara T. Cytokines in alopecia areata: contrasting cytokine profiles in localized form and extensive form (Alopecia universalis). Actadermato- Venereologica. 1996; 76(6):421-423.

Kasumagić-Halilovic E, Cavaljuga S, Ovcina-Kurtovic N, Zecevic L. Serum levels of interleukin-2 in patients with alopecia areata: relationship with clinical type and duration of the disease. Skin Appendage Disorders. 2018; 4(4):286- 290. https://doi.org/10.1159/000486462. PMid:30410898 PMCid:PMC6219233.

Zainodini N, Hassanshahi G, Kazemi Arababadi M, Khorramdelazad H, Mirzaei A. Differential expression of CXCL1, CXCL9 CXCL10 and CXCL12 chemokines in alopecia areata. Iranian Journal of Immunology. 2013; 10(1):40-46.

Kuwano Y, Fujimoto M, Watanabe R, Ishiura N, Nakashima H, Ohno Y, Yano S, Yazawa N, Okochi H, Tamaki K. Serum chemokine profiles in patients with alopecia areata. British Journal of Dermatology. 2007; 157(3):466-473. https://doi. org/10.1111/j.1365-2133.2007.07943.x. PMid:17489976.

Gregoriou S, Papafragkaki D, Kontochristopoulos G, Rallis E, Kalogeromitros D, Rigopoulos D. Cytokines and other mediators in alopecia areata. Mediators of Inflammation. 2010; 2010:928030. https://doi.org/10.1155/2010/928030. PMid:20300578 PMCid:PMC2837895.

Disteldorf EM, Krebs CF, Paust HJ, Turner JE, Nouailles G, Tittel A, Meyer-Schwesinger C, Stege G, Brix S, Velden J, Wiech T. CXCL5 drives neutrophil recruitment in TH17-mediated GN. Journal of the American Society of Nephrology. 2015; 26(1):55-66. https://doi.org/10.1681/ ASN.2013101061. PMid:24904089 PMCid:PMC4279732

Hoggard N, Hunter L, Duncan JS, Williams LM, Trayhurn P, Mercer JG. Leptin and leptin receptor mRNA and protein expression in the murine fetus and placenta. Proceedings of the National Academy of Sciences. 1997; 94(20):11073- 11078. https://doi.org/10.1073/pnas.94.20.11073. PMid:9380761 PMCid:PMC23608.

Chen X, Lin J, Hausman DB, Martin RJ, Dean RG, Hausman GJ. Alterations in fetal adipose tissue leptin expression correlate with the development of adipose tissue. Neonatology. 2000; 78(1):41-47. https://doi. org/10.1159/000014245. PMid:10878421.

Yang CC, Sheu HM, Chung PL, Chang CH, Tsai YS, Hughes MW, Tuan TL, Huang LL. Leptin of dermal adipose tissue is differentially expressed during the hair cycle and contributes to adipocyte"mediated growth inhibition of anagen"phase vibrissa hair. Experimental Dermatology. 2015; 24(1):57-60. https://doi.org/10.1111/exd.12566. PMid:25313970.

Sumikawa Y, Inui S, Nakajima T, Itami S. Hair cycle control by leptin as a new anagen inducer. Experimental Dermatology. 2014; 23(1):27-32. https://doi.org/10.1111/ exd.12286. PMid:24237265.

Poeggeler B, Schulz C, Pappolla MA, Bodó E, Tiede S, Lehnert H, Paus R. Leptin and the skin: a new frontier. Experimental Dermatology. 2010; 19(1):12-18. https://doi. org/10.1111/j.1600-0625.2009.00930.x. PMid:19601981.

Chu C, Yang C, Lin L, Hughes M, Tsai Y. The role of local and systemic leptin in androgenetic alopecia. Journal of Investigative Dermatology. 2017; 137(5):546. https://doi. org/10.1016/j.jid.2017.02.287.

Won CH, Joo YH, Lee DH, An JS, Kim BJ, Kwon O, Cho KH, Kim K, Eun HC. The analysis of the expression of TGF-β in human hair follicles in vivo. Korean Journal of Dermatology. 2007; 45(4):321-326.

Shull MM, Ormsby I, Kier AB, Pawlowski S, Diebold RJ, Yin M, Allen R, Sidman C, Proetzel G, Calvin D, Annunziata N. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature. 1992; 359(6397):693- 699. https://doi.org/10.1038/359693a0. PMid:1436033 PMCid:PMC3889166.

Wahl SM. Transforming growth factor beta: the good, the bad, and the ugly. The Journal of Experimental Medicine.1994; 180(5):1587-1590. https://doi.org/10.1084/ jem.180.5.1587. PMid:7964446 PMCid:PMC2191721.

Sellheyer K, Bickenbach JR, Rothnagel JA, Bundman D, Longley MA, Krieg T, Roche NS, Roberts AB, Roop DR. Inhibition of skin development by overexpression of transforming growth factor beta 1 in the epidermis of transgenic mice. Proceedings of the National Academy of Sciences. 1993; 90(11):5237-5241. https://doi.org/10.1073/ pnas.90.11.5237. PMid:7685120 PMCid:PMC46691.

Glick AB, Lee MM, Darwiche N, Kulkarni AB, Karlsson S, Yuspa SH. Targeted deletion of the TGF-beta 1 gene causes rapid progression to squamous cell carcinoma. Genes and Development. 1994; 8(20):2429-2440. https://doi. org/10.1101/gad.8.20.2429. PMid:7958907.

Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science. 1995; 268(5215):1336-1338. https://doi.org/10.1126/ science.7761852. PMid:7761852.

Cohen S. The Epidermal Growth Factor (EGF). Cancer. 1983; 51(10):1787-1791. https://doi.org/10.1002/1097- 0142(19830515)51:10<1787::AID-CNCR2820511004 >3.0.CO;2-A.

Weger N, Schlake T. Igf-I signalling controls the hair growth cycle and the differentiation of hair shafts. Journal of Investigative Dermatology. 2005; 125(5):873- 882. https://doi.org/10.1111/j.0022-202X.2005.23946.x. PMid:16297183.

Ahn SY, Pi LQ, Hwang ST, Lee WS. Effect of IGF-I on hair growth is related to the anti-apoptotic effect of IGF-I and up-regulation of PDGF-A and PDGF-B. Annals of Dermatology. 2012; 24(1):26-31. https://doi.org/10.5021/ ad.2012.24.1.26. PMid:22363152 PMCid:PMC3283847.

Tomita Y, Akiyama M, Shimizu H. PDGF isoforms induce and maintain anagen phase of murine hair follicles. Journal of Dermatological Science. 2006; 43(2):105-115. https://doi.org/10.1016/j.jdermsci.2006.03.012. PMid:16725313.

Zhou N, Fan W, Li M. Angiogenin is expressed in human dermal papilla cells and stimulates hair growth. Archives of Dermatological Research. 2009; 301(2):139-149 https://doi.org/10.1007/s00403-008-0907-5. PMid:18936943.